

RWANDA: TRANSMISSION MASTER PLAN (2023 – 2030)

June 2023

APPROVALS

Description	Names	Title	Signature
Prepared by	Innocent NIYONSHUTI	Ag. Chief Engineer	Digitally
		Power System Design,	Innocent
		EDCL	NIYONSHUTI Diaitally signed by
Checked by	Esdras RUGIRA	Director of Planning,	Denyse Umulisa Date: 2023.08.07
5		EDCL	09:47:40 +02'00'
	Claver GAKWAVU	Director of Strategic	Digitally signed by BEG(Director Planning)
		Planning, REG	Manuen Date: 2023.08.07 09:57:33 +02'00'
Approved by	Ron WEISS	Chief Executive Officer,	09.37.33 +02.00
		REG	

TABLE OF CONTENTS

TABLE OF CONTENTS	ii
LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF ABBREVIATIONS	V
EXECUTIVE SUMMARY	vi
I. INTRODUCTION	8
II. OBJECTIVES	8
III. PROBLEM STATEMENT	9
IV. TRANSMISSION NETWORK PLANNING METHODOLOGY	9
V. PLANNING CRITERIA	10
VI. LOAD FORECAST METHODOLOGY	11
VII. KEY UPDATES – JUNE 2023:	16
VIII. TRANSMISSION NETWORK DEVELOPMENT	20
a. ROADMAP DEVELOPMENT OF INDUSTRIAL PARKS SUPPLY	45
b. TRANSFORMER MOVEMENTS	46
c. OTHER TRANSFORMER UPGRADES REQUESTED	48
d. NEW TRANSFORMERS REQUIRED	50
IX. CONCLUSION & RECOMMENDATIONS	52
X. ANNEX:	53
A. CONTINGENCY ANALYSIS:	53
C.TRANSMISSION SYSTEM & KEY PARAMETERS:	63
B. OVERVIEW OF HV TRANSMISSION PROJECTS – ONGOING, F	UNDED AND
UNFUNDED:	71
C.2. ONGOING PROJECTS	71
C.3. FUNDED PROJECTS	73
C.4. UNFUNDED PROJECTS	76

LIST OF TABLES

.12
.14
.22
ed.
ed.
.28
.34
.39
.41
.45
.46
.48
.50
.54
.63
.65
.67
.70
.71
.73
.76

LIST OF FIGURES

Figure 1: Grid load forecast (in MW)	14
Figure 2: Illustration of households within 37m proximity to an LV network line	15
Figure 3: Transmission network (HV line) in 2021	21
Figure 4: Transmission network (HV line) in 2023 Error! Bookmark not d	efined.
Figure 5: Transmission network (HV line) in 2024	27
Figure 6: Transmission network (HV line) in 2025	33
Figure 7: Transmission network (HV line) in 2027	40
Figure 8: Transmission network (HV line) in 2028	42

LIST OF ABBREVIATIONS

BIA	Bugesera International Airport
BIP	Bugesera Industrial Park
HV	High Voltage
IP	Industrial Park
OHTL	Overhead Transmission Line
SS	Substation

EXECUTIVE SUMMARY

Reliable and resilient electricity supply is essential for any economy to grow and prosper. A strong, dependable and robust transmission network that has sufficient capacity to satisfy demand requirements is a necessary condition for provision of this electricity to all corners of a nation. The transmission network must therefore be developed and extended to meet increasing demands on the network by connecting new loads, power stations, substations and other network strengthening elements. This development must be least-cost while satisfying key network objectives and criteria set by the utility to ensure high quality electricity delivery and supply throughout the country.

The Transmission Development Plan 2023 - 2030 is the plan for the development of the Rwandan transmission network and interconnection over the next 6 years. This plan presents projects that are required for the operation of the transmission network. In addition, future needs that may drive future potential projects are represented in the demand forecast methodology.

Drivers of Transmission Network Development

The key objectives guiding investment in the Rwandan transmission network are summarized as follows:

- I. Ensuring the security of electricity supply.
- II. Ensuring interconnectivity with neighboring countries to foster regional electricity trade.
- III. Ensuring the reliability, quality and resilience of the Rwandan grid.

Methodology

An existing and updated model of the entire national transmission system was done using DigSilent PowerFactory¹. Existing and forecasted loads on the system were included in the model and simulation with the existing network was done (power flow study) to identify current and potential problematic areas in terms of voltage load, transformer loading and other key indicators of grid weaknesses. The future network (expected lines, interconnectors, transformers, loads and other elements) were then included in the model and further simulated to ensure grid stability. A contingency analysis² was then performed on the entire network and results presented in the report.

¹ Key transmission related parameters in <u>annex</u>.

² Results in <u>Annex</u>.

Transmission Network Reinforcements

This development plan considers all transmission-related projects – those underway and expected/required for transmission system reliability and stability (both funded and unfunded) – with their expected years of operation.

Capital Expenditure

All transmission development projects require funding for the planning period addressed within this plan. Annual cost breakdowns per projects over the planning horizon are presented within this plan – both funded and unfunded³.

In addition, this particular update (June 2023) includes updated cost estimates (expropriation, customs and feasibility study related costs). Projects that still require funding have further been prioritized in order of their relevance to grid reliability requirements, based on power flow and contingency analyses done.

³ See transmission project annual breakdown, Annex.

I. <u>INTRODUCTION</u>

The national transmission network is responsible for transporting the power produced by generation power plants throughout the country. To ensure that this network is reliable and efficient, a plan has been developed by REG to guide its expansion as the national load increases. This plan has been developed subject to specific criteria to ensure network strength and reliability in the country. This plan is reviewed every 6 months to ensure that the set objectives set out in this plan are still being fulfilled.

The Rwanda national high voltage (HV) transmission system operates at 220kV and 110kV. The 220kV network is used for larger generation power plants and for power trade, while the 110kV is the main transmission network used at national power transmission level to the end user. As of June 2023, the total length of the HV transmission system is 1156.291 km with 35⁴ substations on the network.

The following sections will highlight the general objectives, key methodologies, challenges of the existing network, planning methodology & criteria and planned network development projects.

II. <u>OBJECTIVES</u>

The function of the Transmission Network (110kV & 220kV) is to evacuate power from the generation stations to the main substations in the country. The objective is to do this efficiently to minimize losses, enable system reliability and allow flexibility in operation. This transmission plan aims to do the following:

- 1. To plan and design for regional transmission interconnectors.
- 2. To plan and design the network to function under contingency conditions.
- 3. To plan and design how every power plant with an installed capacity of over 5 MW must have more than one evacuation line. This is to ensure the availability of the power plants under all conditions.
- 4. To plan and design how existing lines can be upgraded or maintained without network interference or interruption of supply.

⁴ Excluding Mururu I and II, including the nearly completed Nyabihu S/S.

5. To install static or dynamic reactive control devices to control high voltages during offpeak conditions and low voltages on single and multiple contingencies.

III. PROBLEM STATEMENT

Some of the key identified challenges that affect the national transmission system in Rwanda are outlined below:

- 1. The Rwandan national grid is isolated from the transmission networks of the neighbouring countries or interconnected with a weak link.
- Many substations have only one source of supply and some of them don't have n-1 connections.
- 3. All significant power plants have only one evacuation line each, which reduces the availability of the power plants during the failure of the evacuation line and this have for several occasions, resulted into catastrophic circumstance of blackout.
- 4. Frequent voltage drops on the high voltage network due to small size of network conductors, system overloading & long distance.
- 5. High voltages in the transmission lines due to light loading of transmission lines and limited reactive power control capability.

IV. TRANSMISSION NETWORK PLANNING METHODOLOGY

The following steps are taken to ensure efficient and relevant planning of the transmission network:

- 1. Modeling the existing network using Power Factory.
- 2. Modeling network with existing loads.
- 3. Simulation of existing network with future loads considering electrification and bulk loads to determine network supply limits.
- 4. Modeling future network.
- 5. Simulate future loads on future network.
- 6. Perform Contingency Analysis.

V. <u>PLANNING CRITERIA</u>

The following key criteria are used and incorporated within the existing Rwanda transmission model to ensure reliability and stability of the grid:

- 1. All transmission lines in Rwanda must have N-1 supply option (supplied from at least two sources).
- 2. All Power Substations in Rwanda must have N-1 supply (at least two evacuation options).
- 3. Evacuation of 5MW Generation and above from a single plant must be able to meet at least n-1 condition (at least two evacuation options).
- 4. High Voltage supply and substations must be installed at all major cities and industrial parks.
- 5. All regional interconnectors and transmission lines supplying major cities or bigger permanent loads are constructed to allow for two circuits (allow for future growth use same corridor and structures).
- 6. Transmission lines shall be designed to provide for a minimum of N-1 physical contingency and this provision may provide a waiver to double circuit requirement if such is not justified by Generation or expected demand
- 7. The transmission lines constructed on voltages above 110kV will be operated at 110kV where required until the load justifies the 220kV (reduce reactive losses) or other reactive compensation is installed for local network conditions except Countries interconnection transmission 220kV lines.
- 8. The lines constructed for major international/regional load transfer/electricity trade will be operated on voltages at which they were designed for to ensure coordination and harmonization.
- Distribution (15kV and 30kV) must not be on the same transformer as the regional interconnection network (220kV or above). Distribution must be done from the 110kV intermediate voltage network (to maintain the interconnection reliability).
- 10. Transmission Substations must be designed and positioned in accordance with the requirements of the Distribution Master Plan.

- 11. All substations shall have a double HV bus bar with split or double MV bus bar and coupler breaker to allow operational flexibility (and availability) of the network.
- 12. All new substations must be designed and prepared for two transformers (N-1) even if only one is installed initially.
- 13. A minimum transformer size of 20MVA must be used for all new Distribution substations.
- 14. All substations shall have disturbance fault recorders and synchro-check relays.

VI. LOAD FORECAST METHODOLOGY

To plan for transmission network growth and reliability, the load must also be considered and appropriate and country-relevant load forecasting methodology must be applied. This chapter outlines the key assumptions and methodology applied in this expansion master plan.

It is important to note than in transmission planning, it is not realistic to model a static/single load growth forecast percentage. This is due to different factors such as population (potential load) growth & distribution (which determines different substation feeder load growth percentages), urbanization (urban load growth is different from that of rural), load type and current/expected location on the network (e.g. residential, industrial, commercial) which is highly dependent on development plans (in the case of Rwanda secondary cities and their corresponding infrastructure such as industrial parks).

Bearing this in mind, the different feeder loads and expected load growth per substation throughout the country were considered to vary (e.g. lower growth in rural areas, versus medium or high growth in urban areas or areas expecting bulk loads like industrial parks and/or commercial centers).

In addition, loads were modelled according to 3 different categories:

- 1. Existing loads (already connected to the grid).
- 2. New loads (expected to be connected to the grid by 2024 as per the NEP expected grid connections).
- 3. Bulk loads (non-residential loads that normally require more available and stable power supply than residential loads, e.g. industrial parks, airports, commercial centers, etc.).

These different load types also correspond to dynamic load growth forecasts, given the factors stated earlier on.

ASSUMPTIONS:

The following assumptions were made to calculate load forecasting:

1. Existing Loads: The growth of the existing load is divided into 3 levels – low, medium, and high growth for urban and rural loads. Annual load growths are presented in percentages per growth forecast category (refer to table 1 below).

Table 1: Load growth per category

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Growth on Existing load LOW	0.0%	4.0%	4.0%	4.0%	4.0%	3.5%	3.5%	3.5%	3.0%	3.0%	3.0%	2.5%	2.5%	2.5%
Growth on Existing load MED	0.0%	5.0%	5.0%	5.0%	5.0%	4.5%	4.5%	4.5%	4.0%	4.0%	4.0%	3.5%	3.5%	3.5%
Growth on Existing load HI	0.0%	6.0%	6.0%	6.0%	6.0%	5.5%	5.5%	5.5%	5.0%	5.0%	5.0%	4.5%	4.5%	4.5%

Different substation feeders were simulated using different growth categories. For example, load growth observed on feeders supplying Nyamagabe is not expected to grow as fast as those supplying Kigali or Rubavu. Therefore, the feeders connecting Nyamagabe district load were modelled under low/medium growth conditions while those connected to Kigali or Rubavu were modelled as high growth conditions based on historical growth and expected connections as per the table above. *This assumption only applies for existing loads however*. The methodology differs when considering the new and bulk loads expected on the network.

This was done to capture a more realistic picture of the varying demand per feeder on the network for more prudent planning and investment channeling for network strengthening.

2. New & Bulk Loads: The population growth is taken as 3%⁵. That implies that target (new loads) connections are expected to grow annually by 3%. After 100% national electrification, the population growth must still be catered for.

DigSilent PowerFactory has a provision for expected load growths based on new connections in the form of expected curves (i.e. S-curve, step functions and other user-defined curves where applicable). For the new connections the "S" Curve for electrification and therefore new loads - was considered. This represents a gradual load increase, as the number of appliances increase per household.

⁵ Obtained from population growth statistics as per the NISR.

For bulk loads, however the load increase was represented by step increase (step functions) on the expected feeder they are to be connected to. This is due to the higher nature of their demand on the network, which is typically different from residential loads in Rwanda.

METHODOLOGY:

Load forecasting methodology has been performed according to the following process:

- I. Collection of data for population growth (date collected from NISR) (3% per year).
- II. Following the development roadmap of Industrial Parks (data collected from MINICOM) for more accurate bulk load representation.
- III. Use of arc-GIS software in determination of households located 37 meters from Low Voltage network (service connection length).
- IV. Considering the After Diversity Maximum Demand (ADMD) in Rwanda (80Watts per household).
- V. Modelling per substation per feeder, paying close attention to the area being modelled (urban/rural, existing, new, bulk or all load categories and their expected load growths and connection growths per area). The total expected annual peak load (MW) is then simulated in the model to reflect the following results:

Figure 1: Grid load forecast (in MW)

Table 2: Peak demand

	Year	2019	2020	2021	2023	2023	2024	2025	2026	2027	2028	2029	2030
]	Peak demand												
	(MW)	133.9	151	165.1	181.5	200.65	209.5	217.2	224.9	232.5	240.6	250.7	262.7

This aggreggated grid load forecast obtained from the modelling and simulation results in an average growth of 6.4% throughout the planning horizon. It is important to note that demand growth was done per feeder, taking into account load types, categories, expected connections as per the grid-off-grid target by 2024 as well as the area being modelled (urban/rural).

This is to ensure prudent planning and investment advisory as opposed to an overestimated aggreggated growth, and yet different areas of the country will grow at different paces. Demand growth considerations in transmission planning are heavily location-based, urbanization-dependent and bulk-load and electrification-target oriented. Therefore, these disparities in load growth have been captured in the model for a more realistic picture of the nature of loads and expected loads in Rwanda.

VI. Calculation of feeder load:

The total load per feeder is calculated using the equation below:

$$FL = ER \times HH \times ADMD + IPL$$

where:

FL	Feeder Load
ER	Electrification Rate
HH	Number of households located a maximum distance of 37 m from the LV
	network
ADMD	After Diversity Maximum Demand
IPL	Industrial Parks Load

The following is an illustration of the exercise done to identify households which are located 37m max from the LV network in arc-GIS software

Figure 2: Illustration of households within 37m proximity to an LV network line

Using ArcGIS, the total number of these households are calculated and used in the feeder load calculation in step VI above.

VII. <u>KEY UPDATES – JUNE 2023:</u>

In addition to the June 2023 updates already incorporated into the transmission model, the following June 2023 updates were made:

- The total length of Existing Transmission Lines has been changed from 973.13km to 1156.291km.
- The Transmission Line 110kV Nyabarongo II-Nzove was presented to DPs, the funder is not yet available.
- 110/15kV Nzove Cut_In Cut_Out with an additional transformer of 20MVA was presented to DPs, the funder is not yet available.
- Upgrade of Rukarara SS (from 2*10MVA to 2*20MVA) was presented to DPs, the funder is not yet available.
- The operational timeline for some projects is changed according to LCDP.
- The status of 220kV Rusumo-Bugesera-Shango(117.651km), 220kV-Kigoma-Gisagara-Burundi border(64km) and SPLK Evacuation (4.5km) Projects has been changed from Ongoing to Existing.
- Shango SS has been completed including the 220kV Transformer and line bays.
- Some Projects have been accepted to be funded by EIB and kFW
- The 110kV Bugesera-Gasogi has been replaced by 220kV Kigoma-Rwabusoro i.e this project is now under projects with funds.
- Masaka substation is introduced in this version
- Upgrade of Birembo SS
- Some Projects without feasibility studies are considered in this version.
- Improving Substations System Automation and Security (To be remotely operable, having CCTV cameras, To have fingerprint system, AC in Control Room, Public Lighting, Lightning arrestors for control Room, To have Synchrocheck,...)

The following projects also are considered in this version:

S/N	Substation	Scope of Upgrade	Required Budget (USD)	Financier	Project Status	Anticipated Completion Date
1	Gasogi	Upgrade of substation into a cut-in cut- out substation with 2*15MVA, 110/15kV new transformers with associated 15kV MV line	20,000,000	ЛСА	Ongoing	2023
2	Nyabarongo	Extension of substion to accomodate 20MVA, 110/30kV transformer with associated 30kV lines	4,298,352.00	RBF	Ongoing	2023
3	Gikondo	Replacement of 2 existing power transfromers with 2*30MVA, 110/15kV	2,104,407.12	RUEAP/AFDB	Under Procuremnt	2024
4	Gahanga	Extension of Gahanga substation with 20MVA, 110/15kV new transformer bay	1,331,008.77	RUEAP/AFDB	Under Procuremnt	2024
5	Nzove	Extension of Nzove substation into cut- in cut-out with 20MVA, 110/15kV new transformer bay	3,500,000.00	RUEAP/AFDB	Under Procuremnt	2024
6	Birembo	Replacement of the 20MVA transformer, shifted to Musha substation	1,800,000	JICA	Proposal Submitted	2025

S/N	Substation	Scope of Upgrade	Required Budget (USD)	Financier	Project Status	Anticipated Completion Date
7	Bugarama	Extension of accommodate a new 20MVA,110/30kV transformer and associated 30kV MV lines	3,500,000	ЛСА	Proposal Submitted	2025
	TOTAL		36,533,767.89			

VIII. TRANSMISSION NETWORK DEVELOPMENT

This chapter shows the expected annual transmission network development from $2023 - 2030^6$. Maps and tables corresponding to the map, i.e. every line and/or substation that is scheduled for construction.

⁶ For an updated list of ongoing, funded and unfunded transmission-related projects, please go to the <u>annex</u>.

2023 TRANSMISSION NETWORK

This section displays the High Voltage (HV) transmission network in 2023 (map below⁷), ongoing and planned projects in that year (table following).

Figure 3: Transmission network (HV line) in 2023

 $^{^7}$ Double click on the map in this document to open PDF for review.

2023 PROJECTS

Fable 3: Ongoing Transmission network projects in 2023(starting from Procurement Phase)

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD) including all taxes and			
				Expropriation Cost			
1.	110/30kV Bugesera	Construction of	6	2,280,000			
	International Airport SS 1 Cut-in	Transmission Line					
	Cut-out						
2.	110kV BIP-BIA 2	Construction of	23.4	4,446,000			
		Transmission Line					
	110 Nyabarongo 2-Rulindo	Construction of					
3		Transmission Line	16.65	14 995 200			
5.		and Nyabarongo 2	10.05	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		switchyard					
4	220/110kV	Rubavu	75/93 8MVA ONAN/ONAF				
		SS(Resuming)		14,487,652.09			
5	220/110kV	Bwishyura	75/93.8MVA ONAN/ONAF				
5.	220/ 110K V	SS(Resuming)					

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD) including all taxes and
				Expropriation Cost
6.	220/110kV	Shango	75/93.8MVA ONAN/ONAF	
	220/110KV	SS(Resuming)		
7	Bwishyura-Kigoma	Construction of	5(7 9 47 500 09
/.		Transmission Line	50	7,847,322.38
	Gasogi	Upgrade of	0.476	16,227,040
		substation into a		
		cut-in cut-out		
		substation with		
8.		2*15MVA,		
		110/15kV new		
		transformers with		
		associated 15kV		
		MV line		
	Nyabarongo	Extension of	From 1MVA 6.6/30kV to	4,300,000
9.		substation to	20MVA 110/30kV	
		accommodate		
		20MVA, 110/30kV		

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD)	including all taxes and
				Expropriation Cost	
		transformer with			
		associated 30kV			
		Double Circuit line			
	110kV Nyabihu-Rubavu	Construction of	40	7,2	00,000
10.		Transmission Line			
10.		Construction of			
		Line Bays			
	220kV Kigoma-Rwabusoro	Construction of	19	9,7	71,976
11.		Transmission Line			
		(Including two			
		220kV Line Bays)			
	110kV Nyabarongo 1-Nyabihu	Construction of	46	14,0	073,091
		Transmission Line			
12.		Construction of			
		Line Bay at			
		Nyabarongo			
	1				

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD) including all taxes and
				Expropriation Cost
13	220kV Mamba-Gisagara	Construction of	21	4,620,000
		Transmission Line		
		Construction of		
		Line Bays		
14.	110kV Rwabusoro-Bugesera IP	Construction of	21	4,620,000
		Transmission Line		
		Construction of		
		Line Bays		
	220/110kV Kirehe SS cut-in cut-	Construction of	2	10,000,000
15.	out	Transmission Line,	75/93.8MVA	
		Construction of		
		Kirehe SS		
16	110kV Kirehe-Rwinkwavu	Construction of	57.2	10 868 000
10.		Transmission Line	51.2	10,000,000
17.	110kV Gicumbi cut-in cut-out	Construction of	1.54	9,292,600
1,.		Transmission Line,		

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD) including all taxes and
				Expropriation Cost
		Construction of Gicumbi SS		
18.	110kV Rukarara - Huye - Gisagara	Construction of Transmission Line, Extension of Rukarara SS, Construct Huye substation	40.71	19,327,800
19.	110kV Nyagatare-Gabiro	Construction of Transmission Line, Construction of Nyagatare SS	23.87	4,535,300
	TOTAL			158,892,181

2024 TRANSMISSION NETWORK

This section displays the High Voltage (HV) transmission network in 2024 (map below⁸), and the projects that were implemented in that year (table following).

Figure 4: Transmission network (HV line) in 2024

⁸ Double click on the map in this document to open PDF for review.

2024 PROJECTS

Table 4: Ongoing Transmission network projects in 2024(starting from Procurement Phase)

NO.	Project Name	Component	Length/ Capacity	Estimated Cost (USD) including all taxes and Expropriation Cost
1.	110/30kV Bugesera International Airport SS 1 Cut-in Cut-out	Construction of Transmission Line	6	2,280,000
2.	110kV BIP-BIA 2	Construction of Transmission Line	23.4	4,446,000
3.	110 Nyabarongo 2-Rulindo	Construction of Transmission Line and Nyabarongo 2 switchyard	16.65	14,995,200
4.	220/110kV	Rubavu SS(Resuming)	75/93.8MVA ONAN/ONAF	
5.	220/110kV	Bwishyura SS(Resuming)	75/93.8MVA ONAN/ONAF	14,487,652.09
6.	220/110kV	Shango SS(Resuming)	75/93.8MVA ONAN/ONAF	
7.	Bwishyura-Kigoma	Construction of Transmission Line	56	7,847,522.38
8.	Gasogi	Upgrade of substation into a cut-in cut-out substation with 2*15MVA, 110/15kV new transformers with associated 15kV MV line	0.476	16,227,040

9.	Nyabarongo	Extension of substation to accommodate 20MVA	From 1MVA 6.6/30kV to	4,300,000
		Double Circuit line	20MVA 110/30KV	
10.	110kV Nyabihu-Rubavu	Construction of Transmission Line Construction of Line Bays	40	7,200,000
11.	220kV Kigoma-Rwabusoro	Construction of Transmission Line (Including two 220kV Line Bays)	19	9,771,976
12.	110kV Nyabarongo 1-Nyabihu	Construction of Transmission Line Construction of Line Bay at Nyabarongo	46	14,073,091
13.	220kV Mamba-Gisagara	Construction of Transmission Line Construction of Line Bays	21	4,620,000
14.	110kV Rwabusoro-Bugesera IP	Construction of Transmission Line Construction of Line Bays	21	4,620,000
15.	220/110kV Kirehe SS cut-in cut-out	Construction of Transmission Line, Construction of Kirehe SS	2 75/93.8MVA	10,000,000

16.	110kV Kirehe-Rwinkwavu	Construction of Transmission Line	57.2	10,868,000
17.	110kV Rukarara - Huye - Gisagara	Construction of Transmission Line, Extension of Rukarara SS, Construct Huye substation	40.71	19,327,800
18.	110kV Nyagatare-Gabiro	Construction of Transmission Line, Construction of Nyagatare SS	23.87	4,535,300
19.	110kV Gicumbi cut-in cut-out	Construction of Transmission Line, Construction of Gicumbi SS	1.54	9,292,600
20.	Replacement of 2*16.5MVA 6.6/11 Transformers at Nyabarongo Switchyard	0Upgrade of Nyabarongo I Switchyard I	From 16.5MVA to 31.5MVA	3,500,000
21.	220kV Bwishyura-Kamanyola-Rusiz III	riConstruction of Transmission Line, Construction of Kamanyola SS,Consctruction of Rusizi III Switchyard	93	30,353,201
22.	110kV Rusizi Substation cut-in cut-ou	ttConstruction of Transmission Line, Construction of Rusizi SS	0.661 2X20MVA	13,011,520

23.	Gikondo	Replacement of 2 existing power transfromers with	From 2*16.5MVA to	2,104,407.12
		2*30MVA, 110/15kV	2*30MVA	
24.	Gahanga	Extension of Gahanga substation with 20MVA, 110/15kV new transformer bay	20MVA	1,331,008.77
25.	Nzove	Extension of Nzove substation into cut-in cut-out with 20MVA, 110/15kV new Line and transformer bays	20MVA	3,500,000.00
26.	110/30kV Muhanga Substation Cut Ir Cut Out	Construction of Transmission Line Muhanga 110/30kV SS	20.35	8,866,500
27.	Birembo Upgrade	Second transformer 110/45kV including its bay	1x20MVA	1,800,000
	TOTAL			214,066,218

2025 TRANSMISSION NETWORK

This section displays the High Voltage (HV) transmission network in 2025 (map below⁹), and the projects that were implemented in that year (table following).

Figure 5: Transmission network (HV line) in 2025

⁹ Double click on the map in this document to open PDF for review.

2025 PROJECTS

Table 5: Ongoing Transmission network projects in 2025(starting from Procurement Phase)

N0.	Project Name	Component	Length/ Capacity	Estimated Cost (USD)
				including all taxes and
				Expropriation Cost
1.	Gasogi	Upgrade of substation into a cut-in cut-out	0.476	16,227,040
		substation with 2*15MVA, 110/15kV new		
		transformers with associated 15kV MV line		
2.	110kV Nyabihu-Rubavu	Construction of Transmission Line	40	7,200,000
		Construction of Line Bays		
3.	110kV Nyabarongo 1-Nyabihu	Construction of Transmission Line	46	14,073,091
		Construction of Line Bay at Nyabarongo		
4.	220kV Mamba-Gisagara	Construction of Transmission Line	21	4,620,000
		Construction of Line Bays		
5.	110kV Rwabusoro-Bugesera IP	Construction of Transmission Line	21	4,620,000
		Construction of Line Bays		
6.	Replacement of 2*16.5MVA 6.6/110	Upgrade of Nyabarongo I Switchyard	From 16.5MVA to 31.5MVA	3,500,000
-----	--	---	-------------------------	--------------
	Transformers at Nyabarongo I	[
	Switchyard			
7.	220kV Bwishyura-Kamanyola-Rusiz	Construction of Transmission Line, Construction	93	30,353,201
	III	of Kamanyola SS,Consctruction of Rusizi III		
		Switchyard		
8.	110kV Rusizi Substation cut-in cut-out	Construction of Transmission Line, Construction	0.661	13,011,520
		of Rusizi SS		
			2X20MVA	
9.	Gikondo	Replacement of 2 existing power transfromers with	From 2*16.5MVA to	2,104,407.12
		2*30MVA, 110/15kV	2*30MVA	
10.	Gahanga	Extension of Gahanga substation with 20MVA,	20MVA	1,331,008.77
		110/15kV new transformer bay		
11.	Nzove	Extension of Nzove substation into cut-in cut-out	20MVA	3,500,000.00
		with 20MVA, 110/15kV new Line and transformer		
		bays		

12.	110/30kV Muhanga Substation Cut In	Construction of Transmission Line	20.35	8,866,500
	Cut Out	Muhanga 110/30kV SS		
13.	Birembo	Replacement of the 20MVA transformer, shifted to Musha substation	20MVA	1,800,000
14.	Bugarama	Extension of accommodate a new 20MVA,110/30kV transformer and associated 30kV MV lines	20MVA	3,500,000
	TOTAL			114,706,768

This section displays the High Voltage (HV) transmission network in 2026 (map below¹⁰), and the projects that were implemented in that year (table following).

Figure : Transmission network (HV line) in 2026

 $^{^{10}}$ Double click on the map in this document to open PDF for review.

2026 PROJECTS

Table 6: Ongoing T	Transmission network projects in 2026(starting t	from Procurement Phase)

N0.	Project Name	Components	Length/	Estimated Cost
			Capacity	(USD)
1.	110kV Nyabarongo II-Nzove	Construction of Transmission Line	16	6,080,000
2.	110/30kV Muhanga Substation Cut In Cut Out	Construction of Transmission Line Muhanga 110/30kV SS	20.35	8,866,500
		TOTAL	-	14,946,500

This section displays the High Voltage (HV) transmission network in 2027 (map below¹¹), and the projects that were implemented in that year (table following).

Figure 6: Transmission network (HV line) in 2027

 $^{^{11}}$ Double click on the map in this document to open PDF for review.

2027 PROJECTS

Table 7: Ongoing Transmission network projects in 2027(starting from Procurement Phase)

N0.	Project Name	Components	Length/ Capacity	Estimated Cost (USD)	
1	110kV Nyabarongo II-Nzove	Construction of Transmission Line and 2-line	16	6,080,000	
1.		bays			
	110/15kV Masaka Cut-in, Cut-out	110/15kV substation	2x20MVA	4,500,000	
2.		Construction of double circuit line			
			lkm		
		TOTAL		10,580,000	

This section displays the High Voltage (HV) transmission network in 2028 (map below¹²), and the projects to be implemented in that year (table following).

It is important to note that in this year, there are no new planned projects unlike the preceding years. However, with subsequent updates and further load studies of the ever-evolving national transmission network, some required projects may be introduced to expect to operate in this year.

Figure 7: Transmission network (HV line) in 2028

Ongoing Transmission network projects in 2028(starting from Procurement Phase)

N0.	Project Name	Components	Length/ Capacity	Estimated Cost			
				(USD)			
1.	110kV Gicumbi-Nyagatare	Construction of Transmission Line	43	8,113,000			
	110/15kV Masaka Cut-in, Cut-out	110/15kV substation	2x20MVA	4,500,000			
2.		Construction of double circuit line	1km				
	Total						

¹² Double click on the map in this document to open PDF for review.

This section displays the High Voltage (HV) transmission network in 2029 (map below¹³), and the projects to be implemented in that year (table following).

It is important to note that in this year, there are no new planned projects unlike the preceding years. However, with subsequent updates and further load studies of the ever-evolving national transmission network, some required projects may be introduced to expect to operate in this year.

Figure 8: Transmission network (HV line) in 2029

Ongoing Transmission network projects in 2029(starting from Procurement Phase)

N0.	Project Name	Components	Length/ Capacity	Estimated Cost (USD)
3.	110kV Gicumbi-Nyagatare	Construction of Transmission Line	43	8,113,000

¹³ Double click on the map in this document to open PDF for review.

This section displays the High Voltage (HV) transmission network in 2030 (map below¹⁴), and the projects to be implemented in that year (table following).

It is important to note that in this year, there are no new planned projects unlike the preceding years. However, with subsequent updates and further load studies of the ever-evolving national transmission network, some required projects may be introduced to expect to operate in this year.

Figure 9: Transmission network (HV line) in 2030

¹⁴ Double click on the map in this document to open PDF for review.

a. <u>ROADMAP DEVELOPMENT OF INDUSTRIAL PARKS SUPPLY</u>

Plans to accelerate national economic development include construction of industrial parks in the capital, secondary and other cities in Rwanda. The following table shows planned industrial parks across the country, the tentative construction timelines as per RDB and Ministry of Commerce and the dedicated substation that will serve each industrial park as well as the expected operational year for that substation.

S/N	S/N		Industrial Park			Dedicated Substation	
	Name		Startin	Expected	Source of funds	Name	Starting
			g Year	Completio			Year
				n			
1.	Bugesera	Phase	2019	2023	GoR	Bugesera	2023
		Ι				Industrial	
		Phase	2021	2024	GoR and Private	Parks SS(BIP)	
		II &			Developers		
		III					
2.	Rwamaga	na	2019	2023	GoR	Musha	Existing
3.	Musanze		2021	2024	Private	Musanze	2024
					Developers		
4.	Muhanga		2023	2025	Private	Muhanga	2025
					Developers		

Table 8: Electricity demand for industrial parks

5.	Huye	2021	2024	Private	Huye	2025
				Developers		
6.	Rusizi	2021	2024	Private	Rusizi IP SS	2025
				Developers		
7.	Rubavu	2024	2025	Private	Rubavu	2023
				Developers		
8.	Nyagatare	2024	2025	Private	Nyagatare	2027
				Developers		

b. TRANSFORMER MOVEMENTS

Table 9: Transformer movements

Origin of transformer	Voltage ratio	Rating	Destinatio n	Applied Voltage	Rationale	Current Status
Bwishyura	220/110kV	75/93.8MV A	Rubavu	220/110kV	To link/interconnect the local (110kV) network with that of neighboring countries, fostering regional trade in line with key master plan objectives.	The transformer is located at Shango store and it is yet to be used within the project scope.
Shango	220/30kV	25/31.5MV A	Shango	110/15kV	Transformer ratings of 220/30KV are no longer accepted on the network to prevent MV network disturbances from interfering with interconnectors and reducing quality of exported power from Rwanda.	The transformer is located at Shango store and it is yet to be used within the project scope.

Origin of transformer	Voltage ratio	Rating	Destinatio n	Applied Voltage	Rationale	Current Status
					Therefore, the rating was changed to connect the local network through the existing 15KV network at Shango.	
Rubavu	220/30kV	25/31.5MV A	Shango	110/15kV	Transformer ratings of 220/30KV are no longer accepted on the network to prevent MV network disturbances from interfering with interconnectors and reducing quality of exported power from Rwanda. Therefore, the rating was changed to connect the local network. This transformer was moved from Rubavu to Shango, as Shango has a connection to the 15KV network while Rubavu does not.	The transformer is located at Shango store and it is yet to be used within the project scope.
Mt Kigali/Old SS	110/30kV	20MVA	Rubavu	110/30kV	To satisfy the increased demand in Rubavu, including export requirement.	Completed
Birembo (redundancy transformer under the Nyabihu project)	110/15kV	20MVA	Musha	110/15kV	To increase the supply capacity of Rwamagana Industrial Park load.	Completed
Nyabihu project 20MVA for Musha trf no 2	110/15	10MVA	Musha	110/15kV	Grid strengthening	Designs and project quotation have been approved
Bugesera substation	220/30kV	75/93.8MV A	Bugesera substation	220/110kV	Transformer ratings of 220/30KV are no longer accepted on the network to prevent MV network disturbances from interfering with interconnectors and reducing quality of exported power from Rwanda; this was negotiated with contractor to adapt the	The notification for addendum contract negotiation has been sent to the contractor

Origin of transformer	Voltage ratio	Rating	Destinatio n	Applied Voltage	Rationale	Current Status
					project scope and materials to reflect this new policy.	
METTITO water treatment plant (location: Kanzenze)	30/15kV	5MVA	Nasho Cabin	15kV	To reduce the voltage, drop issues at Mpanga Irrigation Project and its surroundings	TBD
Hakan	110/11	20MVA	Return to Gishoma	110kV/11	This transformer was originally at Gishoma PP and was shifted when the PP was not operational. It was shifted to Hakan to test their boilers. This testing activity was completed, and the transformer is being returned to Gishoma PP (taken to Shema power for temporary use).	The transformer has already been shifted to SPLK Temporary S/S; however, it is not installed yet.
Musha Existing	110/15	10MVA	To be determined	110kV	The transformer is available for use; currently not on network but included in this table for record keeping on transformers owned and operated by the utility.	The transformer is stored in Ndera SS (still available for use)

c. OTHER TRANSFORMER UPGRADES REQUESTED

Table 10: Transformers requiring upgrades

Location	Ratio	Rating	Replaced with	Timeline	Defect	Current Status
Kilinda	110/30	6MVA	110/30 6MVA AfDB	2020/21	The existing transformer has been burnt	For the fast aid this transformer has been replaced by the previous transformer of 1.6MVA

Location	Ratio	Rating	Replaced with	Timeline	Defect	Current Status
Mukungwa (Replace old trf)	6.6/110kV	15MVA	6.6/110kV 15MVA AfDB	2020/21	The existing transformer has big oil leakage.	Problem not yet solved (no transformer bought to for replacement)
Gikondo	110/15kV	2 x 15MVA	2 x 30MVA AfDB	2019/20	The existing transformers have oil leakage, overloaded and are so old	Problem not yet solved (no transformer bought to for replacement
Karongi	110/30kV	4MVA	10MVA (located at Kabarondo SS)	2020	The transformer has been burnt	Replacement has been completed successfully
Kibogora (replace old transformer)	110/30kV	6MVA	20MVA AfDB/ADF15	2021	The transformer is too old (1970), and is not working properly especially on voltage regulation (tape changers are not mechanically working conveniently)	Problem not yet solved (no transformer bought for replacement

d. NEW TRANSFORMERS REQUIRED

Table 11: New transformers to be installed

Location	Ratio	Rating	Funding/Project	Timeline	Recent Comments	Current Status
Gisagara	220/110kV	75/93.8MVA		2021/2023	This transformer will help to interconnect 220kV and 110kV networks	Pending
Rubavu	110/30kV	20MVA		2023/24	This transformer will be necessary to increase the capacity of the substation according to the load increment	Pending
Rubavu	220/110kV	75/93.8MVA		2023/24	This transformer will be necessary to increase the capacity of Rubavu SS and for redundancy(n-1) of the substation	This project will be performed during the resuming of the project left by ISOLUX contractor
Birembo - replace transformer moved to Musha	110/15kV	20MVA		2020/21	Highly required since the 20MVA remained at Musha is loaded at 17.5MW during the Peak Hours	This problem will be solved by the transformer that will be supplied by CCCE Ltd (Designs and project quotation have been approved)
Kirehe	110/30kV	20MVA		2023	This is required because: A. 110kV Kirehe-Rwinkwavu Bay. B. 110/30kV Transformer Bay	This scope will be captured in 220/110kV Kirehe SS cut-in, cut-out project
Nyabarongo	110/30kV	20MVA	RBF/AFDB	2020	The tendering process is ongoing	The contract already signed
Spare transformer	110/30kV	20MVA			this will be mandatory for the future projects during the tender and contract preparation	This will depend on finance availability of the project.

Location	Ratio	Rating	Funding/Project	Timeline	Recent Comments	Current Status
New Gasogi substation	220/110kV	75/93.8MVA		2028	This transformer will serve to connect Gasogi SS to the ongoing 220kV Rusumo-Bugesera-Shango OHTL and this will help to extend Kigali Ring	This scope will be captured in 220/110kV Gasogi SS cut-in, cut-out project

IX. <u>CONCLUSION & RECOMMENDATIONS</u>

- I. SVCs and Shunt Rector must be installed in 2023 to help stabilize the network from reactive power (The project is ongoing, and the joint site visit between EDCL and contractor representatives performed for confirmation of the scope of works).
- II. All transmission lines must be installed as per guidelines of this document to ensure efficient power distribution and reliability for the Rwanda network. This specifically include in the medium term, installation of transmission lines recommended in tables, Error! Reference source not found., 4 for the years 2023-2024. Recommendations regarding transformers upgrades (5) and new transformers installations (8) are presented in tables 10 and 11 respectively.
- III. All substations must have the following conditions:
 - ✤ To be remotely operable
 - ✤ All substations must have CCTV cameras
 - Fingerprint system
 - ✤ AC in Control Room
 - Public Lighting
 - Lightning arrestors for control Room
 - Synchro check
- IV. Since the study for ADMD (80W) per household is of 2013 and the development progress of the country is quick. It is recommended that this figure be updated through data collections from EUCL commercial unit.

X. <u>ANNEX:</u>

A. CONTINGENCY ANALYSIS:

Using DigSilent Power Factory, a contingency analysis (N-1) was carried out on the national electricity transmission system to ensure that this condition is met.

Results from this analysis in the form of reports from Power Factory indicate that as time goes and more lines are constructed, the network will be further strengthened and less prone to tripping.

Table 12: Contingency analysis using DigSilent Power Factory

Year	Tripped transmission line (Main cause of disturbances)		Minimum percentage considered for overloading	60%						
		Affected feeder	% loading at normal conditions (before disturbance conditions)	% loading after Tripping of a transmission line (at disturbance conditions)						
		110kV Nyabarongo-Kilinda	28.7	79.1						
		110kV Kilinda-Kigoma	28.8	74.9						
		110kV Kigoma-Mount Kigali	19.9	62.3						
		Minimum percentage considered for under voltage:90%								
		Affected Substations	% voltage at normal conditions (before disturbance conditions)	% voltage after Tripping of a transmission line (at disturbance conditions)						
		Rulindo	97.7	89.5						
		Birembo	97.8	87.9						
		Jabana	97.4	87.9						
2021	220kV D/C Rwabusoro-Bugesera(both circuits tripped)	Nzove	97	87.5						
		Gasogi	95.8	86.7						
		Gikondo	96.9	87.5						
		Mount Kigali	96.8	87.4						
		Gahanga	96.3	87.1						
		Gabiro	95.4	86.8						
		Kigoma	98.2	88.7						
		Gisagara	98.1	88.7						
		Rwinkwavu	94.4	85.6						
		Kabarondo	94.5	85.6						
		Musha	95	85.6						
		Ndera	95.8	86.6						
2023	220kV D/C Rwabusoro-Bugesera(both	Affected feeder	% loading at normal conditions (before disturbance conditions)	% loading after Tripping of a transmission line (at disturbance conditions)						
	circuits inpped)	110kV Bugesera-Bugesera IP	20.6	73						

Year	Tripped transmission line (Main cause of disturbances)	Mi	nimum percentage considered for overloading	: 60%
		110kV Rwabusoro-Bugesera IP	27.2	79.5
		Mir	imum percentage considered for under voltag	e:90%
		Affected Substations	% voltage at normal conditions (before disturbance conditions)	% voltage after Tripping of a transmission line (at disturbance conditions)
		No substation with voltage percentage under 90%	N/A	N/A
		Affected feeder	% loading at normal conditions (before disturbance conditions)	% loading after Tripping of a transmission line (at disturbance conditions)
		110kV Bugesera-Bugesera IP	17.3	67.2
2023	220kV D/C Rwabusoro-Bugesera(both	110kV Rwabusoro-Bugesera IP	24.9	74.6
2020	circuits tripped)	Mir	imum percentage considered for under voltag	e:90%
		Affected Substations	% voltage at normal conditions (before disturbance conditions)	% voltage after Tripping of a transmission line (at disturbance conditions)
		No substation with voltage percentage under 90%	N/A	N/A
2024	No feeder can trouble the network	N/A	N/A	N/A
2025	No feeder can trouble the network	N/A	N/A	N/A
2026	No feeder can trouble the network	N/A	N/A	N/A
2027	No feeder can trouble the network	N/A	N/A	N/A
2028	No feeder can trouble the network	N/A	N/A	N/A

B.TRANSMISSION LINE LOADING ANALYSIS

B1.Random selection of transmission project per province

No	Province	Project	Rational
1	EASTERN	220KV Kirehe cut-in-cut-out OHTL	Grid strengthening and Network stability
2.	Western	110 KV Nyabihu-Rubavu OHTL	Grid strengthening and Network stability
3.	Northern	Musanze cut in cut out OHTL	 Grid strengthening and Network stability.
			•
4.	CoK	110 KV Nzove cut in cut out OHTL	 Grid strengthening and Network stability
			 Additional of 20MVA Transformer.
5	Southern&Western	110KV Nyabarongo-Nyabihu OHTL	Grid strengthening and Network stability

B2. Line Loading Analysis

B2.1 WITH 220 KV KIREHE CUT IN CUT OUT (110KV KABARONDO-RWINKWAVU OHTL LOADED TO 2.2%)

B2.2 WITHOUT 220 KV KIREHE CUT IN CUT OUT (110KV KABARONDO-RWINKWAVU OHTL LOADED TO 21.3 %).

B2.3 WITHOUT 110KV RUBAVU-NYABIHU OHTL (SHANGO-RUBAVU LLOADED AT 6.1%)

B2.4 WITH RUBAVU-NYABIHU OHTL (SHANGO-RUBAVU LLOADED AT 5.8%)

B2.5 WITHOUT 110KV MUSANZE CUT IN -CUT OUT OHTL (110KV Nyabihu-Rubavu OHTL loaded to 10%)

B2.7 WITH 110 KV NZOVE CUT IN CUT OUT OHTL(1010KV Jabana-Mont Kigali OHTL loaded 16.6 %)

B2.9 WITH NYABARONGO-NYABIHU OHTL (110KV Nyabarongo- Kilinda OHTL Loaded to 15.9%)

-igrana

C.TRANSMISSION SYSTEM & KEY PARAMETERS:

JUNE 2023 HV TRANSMISSION SYSTEM:

Table 13: Existing transmission links

63

8

No	Line kV	Description	Length_KM
1	110	Birembo-Gasogi	8.67
2	110	Birembo-Shango	9.59
3	110	Bugarama-Gishoma	12.27
4	110	Bugesera-Bugesera IP	23.10
5	110	Gabiro-Musha	45.96
6	110	Gahanga-Bugesera	17.31
7	110	Gasogi-Musha	17.48
8	110	Gifurwe-Mukungwa (Double Circuit)	18.46
9	110	Gikondo-MountKigali	5.22
10	110	Gikondo - Jabana I	8.36
11	110	Jabana I-Birembo	6.97
12	110	Jabana I-Jabana II	1.29
13	110	JabanaI-Rulindo	25.73
14	110	Kabarondo-Rwinkwavu	7.25
15	110	Karongi-Kibuye	12.41
16	110	Karongi -Kibogora	39.20
17	110	Kibogora-Ntendezi	18.46
18	110	Kibuye-KivuWatt	1.21
19	110	Kigoma-Kilinda	27.45
20	110	Kilinda-Karongi	25.11
21	110	Kilinda-Nyabarongo	27.85
22	110	Kilinda-Rukarara	31.29
23	220	Mamba-Rwabusoro	21.54
24	110	MontKigai-Kigoma	40.33
25	110	MontKigali-Gahanga	9.64
26	110	MontKigali-Jabana	17.25
27	110	Mururu II-Mururu I	0.37
28	110	Musha-Kabarondo	23.35
29	110	Ndera cut-In cut-out	2.14
30	110	Ntaruka-Gifurwe	8.51
31	110	Ntendezi-Bugarama	17.62
32	110	Ntendezi-Mururu II	20.89
33	220	Rubavu-Goma Border	7.01
34	220	Rubavu - Bwishyura/Kibuye	57.54
35	110	Rulindo-Gabiro	63.86
36	110	Rulindo-Gifurwe	24.93
37	220	Rwabusoro-Bugesera SS	40.64
38	220	Shango - Rubavu	106.11
39	220	Shango -Mırama(Up to Uganda Border)	92.01
40	110	Mukungwa-Nyabihu	28
41	220	Rusumo-Bugesera-Shango	117.651
42	220	Kıgoma-Gısagara-Burundı Border	64
43	220	SPLK Evacuation Line	4.5
		TOTAL	156.291

SUBSTATIONS:

Table 14: Current transmission/distribution substations

Ite m	Substation	Substation type	Voltag e [KV]	Shunt Reactor type	Shunt size	Shunt Reacto	Static Var compensat	Transformer Type	Transform er number	Rating [MVA]	Commissioni ng	Comment
				51	[MVA]	r numbe r	or size [Mvar]	51			6	
		transmission/Distribut		Shunt		-						
1	Shango	ion	220	Reactor	7.5	3		220/110/11	1	93.8		two 110/15 transformer are being installed
		transmission/Distribut		Capacitor								
2	Jabana	ion	110	Bank	1.5	3		110/15	2	10		
		transmission/Distribut		Capacitor								
3	Gikondo	ion	110	Bank	1.5	3		110/15	3	15		Replace 15MVA TRF to 31.5MVA
		transmission/Distribut	110					110/15		10		
4	INZOVE	1011 transmission/Distribut	110					110/15	1	10		
5	Mont Kigali	ion	110					110/30;110/1	2	10.20		10MVA for 110/30 and 20MVA for 110/15
5	Mont Rigan	transmission/Distribut	110					5	2	10,20		10WFVA 10F 110/50, and 20WFVA 10F 110/15
6	Gahanga	ion	110					110/15	1	20		
, v		transmission/Distribut										
7	Ndera	ion	110					110/15	2	20		
		transmission/Distribut										New 20MVA TRF on site waiting to be
8	Musha	ion	110					110/15	1	20		installed
		transmission/Distribut										
9	Kabarondo	ion	110					110/15	1	10		
		transmission/Distribut										
10	Rwinkwavu	101	110					110/15	1	6		
11	Cation	transmission/Distribut	110					110/20		20		
11	Gabiro	1011 transmission/Distribut	110					110/30	1	20		
12	Rulindo	ion	110					110/30	1	20		
12	Runndo	transmission/Distribut	110					110/50	1	20		
13	Gifurwe	ion	110					110/30	1	6		
								6.6/110:110/				
14	Mukungwa	Switchyard	110					30	3	15 MVA		2 for 6.6/110KV and 1 for 110/30KV
		transmission/Distribut										
15	Nyabihu	ion	110					110/30	2	20MVA		not commissioned
		transmission/Distribut										
16	Bwishyura	ion	110					110/11	2	15		to be upgraded to 220KV
		transmission/Distribut						110/20		10		
17	Karongi	10n	110					110/30	1	10		
10	17.11	transmission/Distribut	110					110/20	1	(
18	Kibogora	1011	110		I			110/30	1	6		

Ite	Substation	Substation type	Voltag	Shunt	Shunt	Shunt	Static Var	Transformer	Transform	Rating [MVA]	Commissioni	Comment
m			e [KV]	Reactor type	size	Reacto	compensat	Туре	er number		ng	
						r	or size					
					1	r	[ivivai]					
		transmission/Distribut										
19	Ntendezi	ion	110					110/30	1	10		
20	Mururu II	Switching	110					110/70	1	15		this transformer is dedicated for Burundi Part
		transmission/Distribut						110/6.6;30/6.				
21	Mururu I	ion	110					6	2	10;10		10MVA for 110/6.6; and 10MVA for 30/6.6
22	Rusizi II	Switchyard	110					110/6.6	3	15		
23	Gishoma	Switchyard	110					110/11	1	15		
		transmission/Distribut						110/20				
24	Kilinda	101	110					110/30	1	6		
25	Vicence	transmission/Distribut	110					110/20	1	10		Baing unamediad to accommodate 220KW line
25	Rultanana	1011 Switchroad	110					110/30	1	10		Being upgraded to accommodate 220K v line
20	Kukarara	switchyard	110					110/30	2	10		
27	Gisagara	ion	220					220/110/30	1	75/93 8MVA	2023	Ungrade
28	Mamba	Switchvard	220					220/11	2	50	2025	opprate
20	Ivitaniou	transmission/Distribut	220					220/11	2	50		
29	Rwabusoro	ion	220					220/110/11	1	93.8		
								110/6.6;30/6.		13.2MVA;4MV		3 for 13.2MVA 110/6.6 TRF and 1 for 4MVA
30	Nyabarongo I	Switchyard	110					6	4	Α		30/6.6
		transmission/Distribut		Capacitor								
31	Birembo	ion	110	Bank	1.5	3		110/15	1	20		
	. ·	transmission/Distribut	110					110/15		1.5		
32	Gasogi	10n	110					110/15	1	15		
33	Rubaya	ion	110					110/30		10 MVA		temporary substation
1	Nyagatara	Substation	110					110/50		10 WI VA	2026	temporary substation
2	Gicumbi	Substation									2020	
3	Kirehe											
4	Gasogi	Substation							2	15 MVA	2020	
5	Buggggarg	Substation							2	15 101 17 A	2020	now SS 110KV
6	Bugesera	Substation	220					220/110 KV	1	75/02 8 MVA	2019	New Transformer
7	Bugasara ID	Substation	110					110/20KV	2	20	2023	
· ·	Bugeseta II Bwabucara	Substation	110					110/30K v	3	50	2020	
0	Mamaha										2019	
10	Ciacacara											
11	Unive	Substation									2022	
12	Dukarara	Substation									2023	
12	Muhanga	Substation	110					110/20 KV			2022	
1.0	Duganda	Substation	110					110/30 KV			2023	
14	Kuganda											
15	Kamayola	Constant and									2024	
16	KUSIZI III	Switchvard	1	1	1		1		1	1	2024	1

Ite	Substation	Substation type	Voltag	Shunt	Shunt	Shunt	Static Var	Transformer	Transform	Rating [MVA]	Commissioni	Comment
m			e [KV]	Reactor type	size	Reacto	compensat	Туре	er number		ng	
					[MVA	r	or size					
]	numbe	[Mvar]					
						r						
17	Symbion											
18	Rubavu	SS	220					220/110		75/93.8 MVA	2021	Upgrade
19	Nyabihu	SS	110					110/30kV		2*20MVA	2012	
20	Musanze	SS							4	20MVA	2030	
21	Nyabarongo II	Switchyard									2024	
22	Symbion	Switchyard									2019	
	Bugesera											
23	Airport	Switchyard							2	40MVA	2020	

2-WINDING TRANSFORMERS:

Table 15: 2-Winding transformers

Item	Substation	HV-Side(KV)	LV-Side (KV)	Rated (MVA)
1	Birembo	110	15	20
2	Birembo SoE	15	0.4	3.3
3	Birembo SoE	15	0.4	3.3
4	Birembo SoE	15	0.4	3.3
5	Birembo SoE	15	0.4	3.3
6	Birembo SoE	15	0.4	3.3
7	Birembo SoE	15	0.4	3.3
8	Bugarama	110	30	12.5
9	Cyimbiri	30	0.4	0.4
10	Gabiro	30	0.4	0.16
11	Gabiro	30	0.4	0.16
12	Gabiro	110	30	20
13	Gabiro	110	30	20
14	Gahanga	110	15	20
15	Gasogi	110	15	10
16	Giciye1	30	0.63	2.6
17	Giciye1	30	0.63	2.6
18	Giciye2	30	0.63	2.6
19	Giciye2	30	0.63	2.6
20	Giciye3	30	6.3	5.6
21	Giciye3	30	6.3	5.6
22	Gifurwe	30	0.4	0.16
23	Gifurwe	110	30	6
24	Gihira	30	6.6	3
25	Gikondo	110	15	15
26	Gikondo	110	15	15
27	Gikondo	110	15	15
28	Gisagara	110	30	20
29	Gisenyi	30	6.6	5

Item	Substation	HV-Side(KV)	LV-Side (KV)	Rated (MVA)
30	Gisenyi	15	0.4	6
31	Gisenyi	6.6	0.4	0.8
32	Gisenyi	6.6	0.4	0.8
33	Gisenyi	6.6	0.4	0.8
34	Gisenvi	6.6	0.4	0.8
35	Gisenvi	6.6	0.4	0.8
36	Gisenvi	6.6	0.4	0.8
37	Gishoma	110	11	15
38	Gishoma	110	11	15
39	Jabana I	110	15	10
40	Jabana I	110	15	10
41	Jabana I TPP	15	0.4	1.6
42	Jabana I TPP	15	0.4	1.6
43	Jabana I TPP	15	0.4	1.6
44	Jabana I TPP	15	0.4	1.6
45	Jabana I TPP	15	0.4	1.6
46	Jabana I TPP	15	0.4	1.6
47	Jabana II	110	6.6	15
48	Jabana II	110	6.6	15
49	Kabarondo	30	0.4	0.16
50	Kabarondo	110	30	10
51	Karongi	110	30	10
52	Keva	30	3.3	2.5
53	Kibogora	110	30	6
54	Kibuye	110	11	20
55	Kibuye	110	11	20
56	Kibuve	30	11	5
57	Kigoma	110	30	10
58	Kilinda	110	30	6
59	Mamba	220	11	50
60	Mamba	220	11	50
61	Mirama	220	132	60
62	Mirama	220	132	60
63	Mont Kigali	30	0.4	0.16
64	Mont Kigali	110	30	10
65	Mont Kigali	110	15	20
66	Mukungwa	110	30	15
67	Mukungwa	110	6.6	15
68	Mukungwa	110	6.6	15
69	Mukungwa II	30	0.63	3.15
70	Mukungwa II	30	0.63	3.15
71	Mukungwa SoE	6.6	0.4	3.3
72	Mukungwa SoE	6.6	0.4	3.3
73	Mukungwa SoE	6.6	0.4	3.3
74	Mukungwa SoF	66	0.4	33

Item	Substation	HV-Side(KV)	LV-Side (KV)	Rated (MVA)
75	Mukungwa SoE	6.6	0.4	3.3
76	Mukungwa SoE	6.6	0.4	3.3
77	Mururu I	110	6.6	10
78	Mururu I	30	6.6	10
79	Mururu II	110	70	15
80	Musha	15	0.4	0.1
81	Musha	110	15	20
82	Ndera	110	15	20
83	Ndera	110	15	20
84	Ndera SoE	15	0.4	3.3
85	Ndera SoE	15	0.4	3.3
86	Ndera SoE	15	0.4	3.3
87	Ndera SoE	15	0.4	3.3
88	Ndera SoE	15	0.4	3.3
89	Ndera SoE	15	0.4	3.3
90	Nkora	30	0.4	0.8
91	Ntaruka	110	30	15
92	Ntaruka	110	6.6	10
93	Ntaruka	110	6.6	10
94	Ntendezi	30	0.4	0.16
95	Ntendezi	110	30	10
96	Nyabarongo I	110	6.6	13.2
97	Nyabarongo I	110	6.6	13.2
98	Nyabarongo I	110	6.6	13.2
99	Nzove	110	15	10
100	Rubavu	110	30	10
101	Rugezi	30	0.68	1.6
102	Rugezi	30	0.68	1.6
103	Rukarara	30	0.4	0.16
104	Rukarara	30	0.4	0.16
105	Rukarara	110	30	10
106	Rukarara	110	30	10
107	Rukarara	30	0.69	15
108	Rukarara	30	0.69	15
109	Rukarara II	30	0.69	3.1
110	Rukarara V	30	0.4	1.7
111	Rukarara V	30	0.4	1.7
112	Rukarara V	30	0.4	1.7
113	Rulindo	30	0.4	0.16
114	Rulindo	30	0.4	0.16
115	Rulindo	110	30	20
116	Rulindo	110	30	20
117	Ruzizi II HPP	110	6.6	15
118	Ruzizi II HPP	110	6.6	15
119	Ruzizi II HPP	110	6.6	15
-				

Item	Substation	HV-Side(KV)	LV-Side (KV)	Rated (MVA)
120	Rwinkwavu	15	0.4	0.1
121	Rwinkwavu	110	15	6

3-WINDING TRANSFORMERS:

Table 16: 3-Winding transformers

Item	Substation	Rated MVA	HV side (KV)	MV side (KV)	LV side (KV)
1	Shango	93.8	220	110	11
2	Rwabusoro	75	220	110	11
3	Bugesera	93.8	220	110	11

B. OVERVIEW OF HV TRANSMISSION PROJECTS – ONGOING, FUNDED AND UNFUNDED:

C.2. ONGOING PROJECTS

Table 17: On-going transmission network projects

No.	Project Name	Components	Length/Capacity	Estimated Cost (USD)	Starting Period	Source of Funds	
1.	Upgrade of Kilinda Transformer from 6MVA to 10MVA	Upgrade of Kilinda SS	From 6MVA to 10MVA	970,665.64	2021	AFDB/RBF	
2.	Installation of 110/30kV 20MVA Transformer at Nyabarongo I Switchyard	Extension of Nyabarongo I Switchyard	20MVA	4,298,352.71	2021	AFDB/RBF	
3.	110kV Nyabarongo II-Rulindo	Construction of Transmission Line, Construction of Nyabarongo II Switchyard	16.65	14,995,200	2024	GoR	
4.	220kV Bwishyura-Kamanyola- Rusizi III	Construction of Transmission Line, Construction of Kamanyola SS, Construction of Rusizi III Switchyard	93	30,353,201	2026	EU	
5.	Construction of Bugesera Industrial Park Substation	110/30kV substation	3 x 30MVA	14,400,000	2023	AfDB	
6.	110kV Kirehe-Rwinkwavu	Construction of Transmission Line	57.2	10,868,000	2023	AfDB	
7.	110kV Nyabihu-Rubavu	Construction of Transmission Line Construction of Line Bays	40	7,200,000	2023	Korea Exim Bank	
8.	110kV Nyabarongo 1-Nyabihu	Construction of Transmission Line	47	14,073,091	2023	Korea Exim Bank	
		Construction of Line Bays	40				
9.	110kV Rwabusoro-Bugesera IP	Construction of Transmission Line	21	4,620,000	2023	Korea Exim Bank	
		Construction of Line Bays					
No.	Project Name	Components	Length/Capacity	Estimated Cost (USD)	Starting Period	Source of Funds	
-----	--	--	-------------------------	-------------------------	--------------------	--------------------	--
10.		Construction of Transmission Line	0.476	16 225 040	2022	Korea Exim	
	220kV Gasogi SS Cut-In, Cut-Out	Construction of 2 Line Bays	75/93.8MVA ONAN/ONAF	16,227,040	2023	Bank	
11.		Construction of Transmission Line			2023		
	220kV Mamba-Gisagara	Construction of 220/110kV Transformer Bay	21	4,620,000		Korea Exim Bank	
		Supply and installation of 220/110kV Transformer at Gisagara SS					
12.	110kV BIP-BIA 2	Construction of Transmission Line	23.4	4446000	2023	AfDB	
13.	220kV Rusumo-Bugesera-Shango	Construction of Transmission Line and associated SS	117	23,741,886.93869	2023	GoR	
14.	220/110kV Rubavu SS(Resuming)	Resuming of project for supply and construction of Rubavu SS	75/93.8MVA	6301021.29	2023	kfW	
15.	220/110kV Bwishyura SS(Resuming)	Resuming of project for supply and construction of Bwishyura SS	75/93.8MVA	6582916.88	2023	kfW	
16.	220/110kV Shango SS(Resuming)	Resuming the construction of line bay and shunt reactor at Shango SS		900015.22	2023	kfW	
17.	220/110kV Birembo SS(Resuming)	Resuming the construction line bay at Birembo SS		808401.12	2023	kfW	
18.	110/11kV Ruganda SS (Resuming)	Resuming the extension of Kibuye SS		498949.75	2023	kfW	
19.	Rukarara-Huye-Gisagara	Construction of Transmission Line,	110	19,327,800	2023	AfDB	
20.	Rwabusoro-Bugesera IP	Construction of Transmission Line,	110	4,620,000	2023	Korea Exim Bank	
21.	Gicumbi cut-in, cut-out (from Rulindo-Gabiro-Musha)	Construction of Transmission Line,	110	9,292,600	2023	AfDB	

No.	Project Name	Components	Length/Capacity	Estimated Cost (USD)	Starting Period	Source of Funds
			TOTAL	199,145,141.55		

C.3. FUNDED PROJECTS

Table 18: Funded transmission network projects

No.	o. Project Name Components Le		Length/Capacity	Estimated	Starting	Source of
				Cost (USD)	Period	Funds
22.	Replacement of a 15MVA 6.6/110 Transformer No1 in Mukungwa Switchyard	Upgrade of Mukungwa Switchyard	From 15MVA to 31.5MVA	1,750,000	2019(Still Pending)	AFDB/RBF
23.	Upgrade of Kilinda Transformer from 6MVA to 10MVA	Upgrade of Kilinda SS	From 6MVA to 10MVA	970,665.64	2021	AFDB/RBF
24.	Installation of 110/30kV 20MVA Transformer at Nyabarongo I Switchyard	Extension of Nyabarongo I Switchyard	20MVA	4,298,352.71	2021	AFDB/RBF
25.	Replacement of 2*15MVA 110/15kV Transformers No 1 and No2) in Gikondo Substation by 2*31.5MVA	Upgrade of Gikondo SS	From 2*15MVA to 2*31.5MVA	3,500,000	2019(Still Pending)	AFDB/RBF
26.	New Gasogi Substation	Construction of new Gasogi Substation	2 x 15MVA	23,542,130	2020	JICA
27.	110kV Nyabarongo II-Rulindo	Construction of Transmission Line, Construction of Nyabarongo II Switchyard	16.65	14,995,200	2025	GoR
28.	220kV Bwishyura-Kamanyola- Rusizi III	Construction of Transmission Line, Construction of Kamanyola SS, Construction of Rusizi III Switchyard	93	30,353,201	2024	EU
29.	Construction of Bugesera Industrial Park Substation	110/30kV substation	3 x 30MVA	14,400,000	2020	AfDB

No.	Project Name	Components	Length/Capacity	Estimated Cost (USD)	Starting Period	Source of Funds	
30.	110kV Kirehe-Rwinkwavu	Construction of Transmission Line	57.2	10,868,000	2021	AfDB	
31.	1101-W Marshiku Dasharan	Construction of Transmission Line	40	7 200 000	2022	Korea Exim	
	TTOKV Nyadinu-Kudavu	Construction of Line Bays	40	7,200,000	2023	Bank	
32.	110kV Nyabarongo 1-Nyabihu	Construction of Transmission Line	46	14,073,091	2023	Korea Exim	
		Construction of Line Bays				Bank	
33.		Construction of Transmission Line				Korea Exim	
	110kV Rwabusoro-Bugesera IP	Construction of Line Bays			2023	Bank	
34.		Construction of Transmission Line	0.476		2022	Korea Exim	
	220kV Gasogi Cut-In, Cut-Out	Construction of 2 Line Bays	75/93.8MVA ONAN/ONAF	93.8MVA AN/ONAF		Bank	
35.		Construction of Transmission Line					
	220kV Mamba-Gisagara	Construction of 220/110kV Transformer Bay	. 21	4,620,000	2023	Korea Exim Bank	
		Supply and installation of 220/110kV Transformer at Gisagara SS					
36.	110kV BIP-BIA 2	Construction of Transmission Line	23.4	4446000	2023	AfDB	
37.	220/110kV Rubavu SS(Resuming	Resuming of project for supply and construction of Rubavu SS	75/93.8MVA	6301021.29	2023	kfW	
38.	220/110kV Bwishyur SS(Resuming)	Resuming of project for supply and construction of Bwishyura SS	75/93.8MVA	6582916.88	2023	kfW	

No.	Project Name	ame Components Length		Estimated Cost (USD)	Starting Period	Source o Funds	
39.	220/110kV Shango SS(Resuming)	Resuming the construction of line bay and shunt reactor at Shango SS		900015.22	2023	kfW	
40.	220/110kV Birembo SS(Resuming)	Resuming the construction line bay at Birembo SS		808401.12	2023	kfW	
41.	110/11kV Ruganda SS (Resuming)	0/11kV Ruganda SS (esuming) Resuming the extension of Kibuye SS		498949.75	2023	kfW	
42.	Gasogi	Upgrade of substation into a cut-in cut-out substation with 2*15MVA, 110/15kV new transformers with associated 15kV MV line	0.476	20,000,000	2023	JICA	
43.	Nyabarongo	Extension of substion to accomodate 20MVA, 110/30kV transformer with associated 30kV lines	From 1MVA 6.6/30kV to 20MVA 110/30kV	4,298,352.00	2023	RBF	
44.	Gikondo	Replacement of 2 existing power transfromers with 2*30MVA, 110/15kV	From 2*16.5MVA to 2*30MVA	2,104,407.12	2024	RUEAP/AFDB	
45.	Gahanga	Cahanga Extension of Gahanga substation with 20 20MVA, 110/15kV new transformer bay		1,331,008.77	2024	RUEAP/AFDB	
46.	Nzove	Extension of Nzove substation into cut-in cut-out with 20MVA, 110/15kV new Line and transformer bays		3,500,000.00	2024	RUEAP/AFDB	
47.	Birembo	Replacement of the 20MVA transformer, shifted to Musha substation	20MVA	1,302,177	2023	GoR	
			TOTAL	203,490,930			

C.4. UNFUNDED PROJECTS15

Table 19: Unfunded transmission network projects

PROJECT NAME	COMPONENTS	LENGTH/ CAPACITY	FS DONE? (Y/N)	ESTIMATE D COST (USD) ¹⁶	RATIONALE	OPERATION AL STARTING PERIOD	PRIORITY
Replacement of 110/30kV 10MVA by 110/30kV 20MVA at Mururu I SS	*Demolishing of 110/30kV 10MVA *Installation of 110/30kV 20MVA	20MVA	Needs assessment was done based on potential for export (to Bukavu) and submitted to EDCL. There is a spare transformer at Mt Kigali ready to be moved to this location. Two export points: Rubavu (Goma) and Bukavu (Mururu I). So where the need for export arises, this transformer will be transferred there. Other modifications are required that are lacking e.g. the MV switchgears; submitted to EDCL (in needs assessment report) at planning department. 2 scenarios were presented; purchase of a new tx or presented; purchase of a new tx or	1,715,136	Power trade with neighboring countries.	2023	1
			have 1 spare/redundant at the moment).				
Muhanga SS cut in cut out	Construction of Transmission Line, Muhanga 110/30kV SS	20.35	NO FS, ToRs to hire the consultant firm are prepared!! Funding proposal are sent to DPs	29,416,919	Muhanga SS is needed to supply Muhanga IP that is expected to come by 2025.	2025	1
110kV Gicumbi-Nyagatare	Construction of Transmission Line	43	FS done	47,775,744	Contingency supply between Gicumbi SS and Nyagatare SS	2027	1
110kV Kigoma-Muhanga	Construction of Transmission Line, Construction of Muhanga SS	17.59	NO FS, ToRs to hire the consultant firm are prepared!! Funding proposal are sent to AfDB	40,948,126	Contingency supply between Kigoma SS and Muhanga SS	2025	1
110kV Nyabarongo II-Nzove	Construction of Transmission Line. Construct Nzove line bay at Nyabarongo II. Construct Nyabarongo II line bay and additional Transformer bay at Nzove.	26.55	NO FS, ToRs to hire the consultant firm are prepared!! Funding proposal are sent to DPs	39,414,988.80	For N-1 condition fulfilment at that time period.	2028	1
110kV Musanze Substation cut-in cut-out	Construction of Transmission Line, Construction of Musanze SS	0.596 2X20MVA	NO FS, ToRs to hire the consultant firm are prepared!! Funding proposal are sent to DPs	25,196,286	Supply reliable power to Musanze IP	2030	4

¹⁵ As mentioned, the total cost of these unfunded projects has been updated to include expropriation (3% of total cost), customs (45% of total cost) and feasibility study costs (10% of total cost) within the calculation. ¹⁶ Adjusted to include NPV formula (20% discount rate), 20% contingency and expropriation (48% project cost).

PROJECT NAME	COMPONENTS	LENGTH/ CAPACITY	FS DONE? (Y/N)	ESTIMATE D COST (USD) ¹⁶	RATIONALE	OPERATION AL STARTING PERIOD	PRIORITY
110kV Rusizi Substation cut-in cut-out	Construction of Transmission Line, Construction of Rusizi SS	0.661 2X20MVA	No FS	25,436,160	Rusizi is a secondary city. This SS will supply Rusizi IP with high quality power.	2024	2
Musanze cut in cut out	Construction of transmission line. Extension of Ntaruka switchyard (20% contingency included in total project cost due to the landscape at Ntaruka HPP potentially driving the cost higher than the standard 110 line bay construction of USD300K). Construction of Musanze IP line bay at Musanze S/S.	20.3	NO FS, ToRs to hire the consultant firm are prepared!! Funding proposals are sent to DPs	16,588,800.00	To supply power to Musanze IP and the surrounding areas as Musanze is as secondary city with a fast-growing load.	2030	4
Upgrade of Rukarara SS	Replacing 2*10MVA by 2*20MVA Transformers, and strengthening of transformer structures and foundations	From 2*10MVA to 2*20MVA		3,500,000	To increase the capacity of Rukarara SS to be able to accommodate the power evacuated from all the surrounding power plants	2024	1
REG Control Centre	 REG/EUCL has a SCADA system which was developed and installed by PSI Ag; a German Company in 2010. Current system has its own weaknesses and REG/EUCL is mobilizing resources to upgrade. Some of those weakness include key energy management aspects which current system cannot provide: Short circuit calculation and overall faults analysis, Outage management/reporting, State estimation and load flow calculations, Contingency analysis, AGC (Automatic Generation Control). Even though REG/EUCL is mobilizing funds to upgrade the existing system, the critical component of replicating existing system to the secure location as backup for security reasons will not be addressed. It is therefore essential that an alternative site be secured to host SCADA as back up. 	N/A		34,500,000	For security and emergency reasons, replicating existing SCADA to a safe and accessible site is very urgent and critical for a number of reasons: • Gikondo, the current National control Centre is an old area and even though its properly protected, it is known and shall continue to be accessed by people with various interests including study tours for learning purposes, • No back up at all for the current SCADA including data backup, which is very risk for the entire system • Data security gaps which exposes the system vulnerability for external attack/hackers, • Old system without any protocol (ICCP) which make it	ASAP	1

PROJECT NAME	COMPONENTS	LENGTH/ CAPACITY	FS DONE? (Y/N)	ESTIMATE D COST (USD) ¹⁶	RATIONALE	OPERATION AL STARTING PERIOD	PRIORITY
	Key components of the backup would include the following: i. Building/the backup site. ii. Software. iii. Computer servers (data, workstations, etc.) iv. Displays/bigger screens or BARCO Rear Projector. v. Firewalls. vi. Switches/Routers. vii. Indoor and out cameras. viii. Standby power supply (generators and UPS). ix. GPS for synchronization. x. Air conditioners xi.SDH communication system, site equipment and required interfaces. xi. Etc. The above and other details shall be detailed to give the right quantities of each.				difficult to interface current SCADA with other systems		
REG Training Centre (REG TC)	Resource Mobilization & Purchase of land. Architectural designs & construction Procurement of equipment & materials. Staffing & Curriculum development. Launch/Start of operations.	The REG TC will contain the following key infrastructure: 2 classrooms 1 Mock network/external training field 9 State-of-the-art Laboratories. MV lab HV lab, Weters lab, Cables, isolators & lines lab Protection lab,	The Feasibility/Project proposal of REG TC was finalized in May 2019	3,194,060,000 (EUR 2817 MILLION)	Capacity building is very critical for energy utilities to adapt to their mandates & evolving sector. REG Training center (REG TC) is the capacity building arm of Rwanda Energy Group. The center will provide hands- on short-term technical trainings on energy/electricity & project management. The center targets clients in Rwanda, the region & beyond.	2025	1

PROJECT NAME	COMPONENTS	LENGTH/ CAPACITY	FS DONE? (Y/N)	ESTIMATE D COST (USD) ¹⁶	RATIONALE	OPERATION AL STARTING PERIOD	PRIORITY
		 Distribution Transformers lab Solar lab, hydro lab Clean cooking/Biogas/ LPG lab/Geothermal lab 6 administrative offices 1 Technical warehouse l restaurant 					
Extension of Bugarama Substation	Extension of Bugarama to accommodate a new 20MVA,110/30kV transformer and associated 30kV MV lines	20MVA		3,500,000	This project will help to improve the quality of power supply in this area	2023	1
		TOTAL		3,474,532,160			

0;'.;.

۰. ۰