

RWANDA: LEAST COST POWER

DEVELOPMENT PLAN (LCPDP) 2024 – 2050

December 2023

Executive Summary

This document provides a least cost generation expansion plan for Rwanda's electricity system.

The Development of the Least Cost Power Development Plan (LCPDP) was undertaken as part of the key exercises under the REG Reform programme that buildings on earlier work that had been carried in 2014 and inscribed in the initiatives of the strategic plan and consistent with the energy sector strategy.

The purpose of the plan is to have a systematic development of the Rwanda Generation Resources prioritizing the least cost options so as to ensure that the tariff affordability objectives are being optimized.

The least cost study is segmented into two phases: <u>*entry of committed projects*</u> (2024 – 2030) and <u>*the long-term*</u> (2030 - 2050).

The results within this report provide a least-cost optimal development path which still meets the forecasted electricity demand. This is expected to propel the country's economic growth, both in terms of providing support for the emerging industry sector and improving the standard of living for Rwanda's citizens.

Rwanda at this time has limited generation resources especially during the dry season when many hydro power plants face water shortage problems. During this period, rental diesel generation is used to supply the peak demand, and this generation comes at a high cost. Efforts are underway however to ascertain the true quantity of existing resources within the country for electricity generation. The results from the electricity generation resources study, which analysed the technical, economic and market potential of hydro, solar, biomass, wind, peat, methane and geothermal resources have been used for this update and will continue for subsequent least cost power development plan (LCPDP) updates.

This generation expansion plan is based on entry of both government generation projects and agreements with private developers. Acceleration of privately funded generation expansion can significantly reduce on the need for government direct investment. However, this also increases the possibility of increased electricity tariffs and consequent losses incurred by the national power utility, especially if the terms of the power purchase agreements (PPA's) do not match the interests of both parties. REG and the Government should therefore use as the least-cost entry dates, technologies and capacities of committed (signed PPA's) generation plants.

The Least-cost generation expansion results show the emergence of new technologies onto the grid under different development scenarios. These include utility scale solar PV with storage, consumer-sized battery storage services, and hydro pumped storage for higher forecasted domestic and export demand in the longer term. Further research into these new technologies should be carried out, as well as more information comes up, concerning an accurate bottom-up demand forecast and the amount of natural gas to be imported from the planned Tanzania-Rwanda pipeline connection.

Signatures

	Names	Title	Signature
	Jovine NSEKANABANGA	Statistician Specialist, EDCL	
Durana di har	Fabrice BUCYEDUSENGE	Corporate Planning Manager, REG	
Prepared by	Laurent BUTERA	Chief Engineer, Power Systems Design, EDCL	
	Frederic Habineza	Chief Engineer, Planning, EUCL	
	Esdras RUGIRA	Director of Planning, EDCL	
Checked by	Gaëlle NSENGIYUMVA	Director of Operations Planning, EUCL	
	Dr Delphine ABIJURU	Director of Strategic Planning, (a.i) REG	Alter
Approved by	Armand ZINGIRO	Chief Executive Officer, REG	

Table of Contents

EXECUTIVE SUMMARY	I
SIGNATURES	II
TABLE OF CONTENTS	III
LIST OF FIGURES	IV
LIST OF TABLES	VI
LIST OF EQUATIONS	VII
ABBREVIATIONS & ACRONYMS	
1. INTRODUCTION	1
2. RWANDA ENERGY SECTOR OVERVIEW	3
3. Demand Forecast	4
4. EXISTING GENERATION PLANTS	9
5. PLANNED GENERATION PROJECTS	12
5.1. Planning Alternatives for Generation System Expansion	
5.1.1. Future Plans	
6. LEAST COST GENERATION EXPANSION PLANNING METHODOLOGY:	
6.1. Model Inputs:6.1.1. Data determining the structure of the energy system	
6.1.2. Data describing energy system development options	20
6.1.3. Other user-specified data 6.2. Options for data presentation in MESSAGE:	
6.2. Options for data presentation in MESSAGE:6.3. Generation Expansion Scenarios:	
7. DECEMBER 2023 ASSUMPTIONS & UPDATES	
7.1. Assumptions:	
7.2. Updates:	
8. Results	26
8.1. Installed Capacity and Peak Demand under Reference scenario	
8.2. Electricity Production & Demand:8.3. Renewable Energy Share (RES) in Total Power Production	
 9. CLIMATE CHANGE & IMPACT ON HYDROPOWER PRODUCTION 9.1. Introduction 	
9.2. Rwanda's Climate & Forecast	
9.3. Streamflow & Available Capacity	
9.3.1. Streamflow Analysis	
9.3.2. Normalized Available Capacity	
10. CONCLUSION & PROPOSED ACTIONS	
10.1. Conclusions	
10.2. Proposed Actions10.3. Way forward	
References	

List of Figures

Figure 1: Rwanda's Current Energy Sector Structure	3
Figure 2: Rwanda Historical GDP and Electricity Consumption Data.	6
Figure 3: Forecasted Total Demand and Peak Demand	8
Figure 4: Evolution of the electricity generation mix	.11
Figure 5: Share of installed capacity by energy source	.11
Figure 6: Current power generation mix	.11
Figure 7: Hydro Power Plant Seasonal Variation	.17
Figure 8: Processes in MESSAGE	
Figure 9: Total domestic installed capacity (MW) in the near term 2024-2030	.26
Figure 10: Total Installed Capacity (MW) in the longer term- 2050	.27
Figure 11: Production per Technology Type (GWh)	.29
Figure 12: RES in Power Production (%)	30
Figure 13: HPPs in Rwanda under analysis (different Climate Models and Clima	ate
Scenarios)	
Figure 14: Average Multi-Model Precipitation (mm) for the Ntaruka Sub-basin	.35
Figure 15: Average Multi-Model Precipitation (mm) for the Mukungwa I Sub-basin	
Figure 16: Average Multi-Model Precipitation (mm) for the Rwaza-Muko/Mukungwa	a II
Sub-basin	
Figure 17: Average Multi-Model Precipitation (mm) for the Nyundo Sub-basin	.36
Figure 18: Average Multi-Model Precipitation (mm) for the Nyabarongo I Sub-basin	37
Figure 19: Average Multi-Model Precipitation (mm) for the Nyabarongo II Sub-basin	
Figure 20: Average Multi-Model Precipitation (mm) for the Rusumo Sub-basin	
Figure 21: Changes in Minimum and Maximum Temperature (°C) for the Ntaru	ıka
Subbasin.	
Figure 22: Changes in Minimum and Maximum Temperature (°C) for the Mukungw	
Sub-basin	
Figure 23: Changes in Minimum and Maximum Temperature (°C) for the Rwa	
Muko/Mukungwa II Sub-basin	
Figure 24: Changes in Minimum and Maximum Temperature (°C) for the Nyun	
Subbasin Figure 25: Changes in Minimum and Maximum Temperature (°C) for the Nyabarong	
Sub-basin	-
Figure 26: Changes in Minimum and Maximum Temperature (°C) for the Nyabarongo	
Sub-basin	
Figure 27: Changes in Minimum and Maximum Temperature (°C) for the Rusur	
Subbasin.	
Figure 28: Changes in Potential Evapotranspiration (Hargreaves Method)	
Figure 29: Average monthly streamflow from the multi-model ensemble for the Ntaru	
subbasin	
Figure 30: Average monthly streamflow from the multi-model ensemble for t	
Mukungwa I sub-basin	
Figure 31: Average monthly streamflow from the multi-model ensemble for the Rwa	
Muko/Mukungwa II sub-basin	
	15

Figure 32: Average monthly streamflow from the multi-model ensemble for the Nyund	0
sub-basin4	6
Figure 33: Average monthly streamflow from the multi-model ensemble for th	e
Nyabarongo I sub-basin4	6
Figure 34: Average monthly streamflow from the multi-model ensemble for the	e
Nyabarongo II sub-basin4	7
Figure 35: Average monthly streamflow from the multi-model ensemble for the Rusum	0
sub-basin	7
Figure 36: Rwanda's mean relative changes in normalized available capacity for RCP 4.5	5.
5	0
Figure 37: Rwanda's mean relative changes in normalized available capacity for RCP 8.5	5.
5	0

List of Tables

Table 1: Annual Peak Demand & Energy Demand Growth for Different Growth Rates	s 6
Table 2: Existing generation plants	9
Table 3: Recently commissioned PPs	11
Table 4: Decommissioned power plants	11
Table 5: Planned Generation Projects (Committed)	12
Table 6: Summary description of studied scenarios	23
Table 7: Summary comparison of various studied scenarios	24
Table 8: Annual Added Capacity (MW) per Technology Type	27
Table 9: Production (GWh) per Technology Type	29
Table 10: Power Plant Characteristics	31
Table 11: General Circulation Models (GCM) obtained from NASA's NEX-GDDP da	itaset
and Used for Streamflow analysis	33
Table 12: Projected Changes in 10th Percentile Naturalized Streamflow	48
Table 13: Projected Changes in Median (50th Percentile) Naturalized Streamflow	48
Table 14: Projected Changes in 90th Percentile t Streamflow	48

List of Equations

Equation 1: End-Use Demand Forecasting	5
Equation 2: Objective Function	16
Equation 3: Demand Equation	16
Equation 4: Balance Equation	16
Equation 5: Water-Balance Equation	

Abbreviations & Acronyms

BAS :	Business as Usual	MW :	Megawatt
CAPEX:	Capital Expenditure	MWh :	Megawatt Hours
CF :	Capacity Factor	NASA :	National Aeronautics and
CIF :	Cost, Insurance & Freight	-	nistration Agency
CNSE :	Cost of Non-Served Energy	NEL :	Nile Equatorial Lakes
CoD :	Commercial Operation Date	NELSAP: Subsidiary A	Nile Equatorial Lakes ction Programme
EDCL : Corporation I	Energy Development Limited		: NASA Earth Exchange Downscaled Projections
EDPRS: Poverty Redu	Economic Development & action Strategy	NISR : of Rwanda	National Institute of Statistics
EICV : Conditions S	Integrated Household Living urvey (Enquête Intégrale sur les	NOx :	Nitrogen Oxides
	e Vie des Ménages)	NST1 :	National Strategy for
ESSP :	Energy Sector Strategic Plan	Transformati	
EUCL :	Energy Utility Corporation	OPEX :	Operational Expenses
Limited		PET :	Potential Evapotranspiration
GCM :	General Circulation Models	PP :	Power Plant
GDP :	Gross Domestic Product	PPA :	Power Purchase Agreement
GHG :	Green House Gas	RCP :	Representative Concentration
HPP :	Hydro Power Plant	Pathways	
IAEA :	International Atomic Energy	REG :	Rwanda Energy Group
Agency		RES :	Rwanda Energy System
IPP :	Independent Power Producer	RES :	Renewable Energy Share
IRENA: Energy Agen	International Renewable cy	SCE : algorithm	Shuffled Complex Evolution
ITCZ :	Inter-Tropical Convergence	SOx :	Sulphur Oxides
Zone		SSA :	Sub-Saharan Africa
km :	Kilometre	T&D :	Transmission & Distribution
KW :	Kilowatt	TBD :	To Be Determined
kWh :	Kilowatt hour	tCO2 eq:	Tonnes of carbon dioxide
LCPDP:	Least Cost Power	equivalent	
Development		TWh :	Terawatts hour
MESSAGE: Supply Alter Impact	Model for Energy System natives & their Environmental	USD :	US Dollar
MININFRA:	Ministry of Infrastructure		

1. Introduction

Electricity availability and consumption is a critical input for economic, social and political development of a country. It is therefore of utmost importance that a country has adequate and reliable electricity supply to meet its demand, based primarily on the existing resources. The development of a least-cost generation development plan provides a realistic guide as to how demand for electricity can be met in the medium and long-term at a minimized cost.

The main policy objectives for the electricity generation sector were declared by the Government of Rwanda within its energy policy on March 2015:

"To ensure sufficient, reliable, sustainable and more affordable power supply. This will be achieved through the following measures:

- i. Revise and update the existing policy, legal, regulatory, institutional, and financial frameworks to support the rapid development of the electricity industry;
- ii. Diversify power generation resources over time and increase the share of clean power in the total mix over time;
- Ensure supply is closely aligned to projected demand, and better align investment planning and funding mobilization more closely to a power generation road map and master plan, a least-cost power development plan, and an electricity sub-sector action plan;
- iv. Enhance regional cooperation and trade in electricity, including investment in transmission network development, to further improve security of supply;
- v. Streamline IPP processes and fast track project delivery by securing long-term funding for planned projects, through a medium-term budget expenditure framework, revising and expanding the existing Renewable Energy Feed-In Tariff regime, developing new information management systems to streamline procedures, and building greater capacity in planning, procurement, and negotiating power transactions."

The main objective of the Rwanda generation master plan, therefore, is to satisfy the forecasted growing demand for electricity within the country while maintaining an acceptable operational reserve margin¹. The study described in this document is based on the least-cost generation expansion planning methodology and has been conducted from the perspective of the national economy, complying with the appropriate operational and reliability considerations.

Other objectives of the plan include:

- i. Maximisation of the use of renewable energy within the country's energy mix.
- ii. Optimisation of the availability of electricity supply to meet peak demand and avoid the possibility of generating excess capacity.
- iii. Adherence to the Rwandan energy policy² and the energy sector strategic plan (ESSP)³ that highlight the need for a least cost power development plan to guide power generation capacity increase and investments.

¹ The NST-1 reserve margin is maintained at a 15% target

² Rwanda Energy Policy: http://www.mininfra.gov.rw/fileadmin/user_upload/new_tender/Energy_Policy.pdf.

³ ESSP: http://mininfra.gov.rw/fileadmin/user_upload/new_tender/Energy_Sector_Strategic_Plan.pdf.

The following section (2) provides a brief overview of Rwanda's energy sector. Section 3 discusses the demand forecast, while sections 4 and 5 cover the existing and planned generation plants within Rwanda. Section 6 provides the least cost planning methodology, generation expansion scenarios and presents the software that was used, while section 7 shows the December 2023 updates. Section 8 outlines and provides a discussion of the least cost results obtained from the least cost modelling. Section 9 covers the recently concluded study on the impact of climate change on hydropower production of the main hydro power plants in the country. Conclusions, proposed actions and way forward are outlined in section 10.

2. Rwanda Energy Sector Overview

Rwanda is a land-locked country with a surface area of 26,338 km² and a growing population, standing at 13.25 million⁴. It is densely populated with 503 habitants per square kilometre⁵, and a per capita GDP of 1,040 (current) USD/capita⁶. Rwanda's economy has been growing at an annual average rate of 8.3% and the Government is targeting an annual average growth rate of 9.1% over the NST2 period (2024-2029). Ensuring universal access to affordable and modern sources of energy remain the paramount target to be achieved by the energy sector.

Rwanda's energy sector consists of different players with different roles to play as specified within the Rwanda grid code. *Figure 1* below provides an overview of the energy sector operating in the country at present.

State-owned Rwanda Energy Group (REG) was incorporated in 2014 to expand, maintain and operate the energy infrastructure in Rwanda through its two subsidiaries – the Energy Utility Corporation (EUCL) and the Energy Development Corporation (EDCL). Within this framework, planning of generation and transmission as well as electrification projects is the joint responsibility of the Ministry of Infrastructure (MININFRA) and the REG.

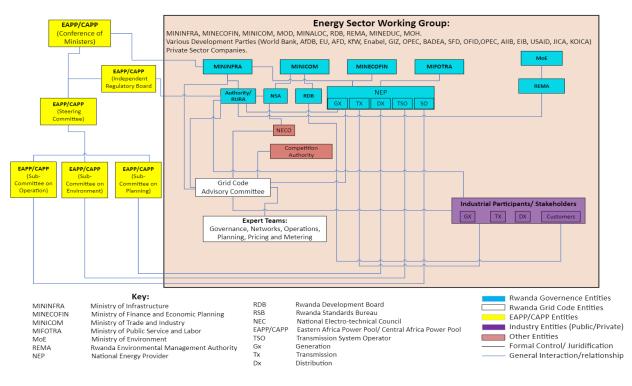


Figure 1: Rwanda's Current Energy Sector Structure

⁴ NISR 2022 Population and Housing Census.

⁵ NISR 2022 Population and Housing Census.

⁶ NISR 2023 Gross Domestic Product

3. Demand Forecast

Demand forecasts estimate the amount of electricity needed in the country or geographic area served by the power system. Generation expansion planning requires a demand forecast, typically from 5-30 years into the future. A demand forecast enables optimum planning for when, how much and what type of generation technologies must be added onto an existing power system. Transmission and distribution systems expansion planning also benefit from demand analysis and forecasts.

Typical information required to perform an extensive demand analysis and forecast include:

- i. Historical records of electricity sales by consumer category and geographical area.
- ii. Chronological demand records over days, weeks, months and years are required to determine the relationship between electricity sales and the amount of generation capacity required. The load profile is used to determine what types of generating capacity are needed.
- iii. Economic and demographic historical data on economic performance and population.
- iv. Economic and demographic projections of either the power utility, an economic planning ministry or from some other governmental entity.
- v. Energy end-use data, e.g. percentage of different consumer categories that use specific electric appliances and the amount of electricity used per customer per end use.

Methods used to model and forecast demand include **trending**, **econometric analysis**, **end-use simulation**, and/or appropriate combinations of all three.

Trend forecasting assumes that past rates of electricity use per consumer category, will grow at a uniform rate. A growth rate calculated from historical data (sales or peak demand data) may be applied to estimate future consumption and demand. Separate trending forecasts can be compiled for each customer class or geographic division. Trend forecasting requires only access to basic sales and peak statistics, and the use of simple statistical methods. However, the exclusive use of trend forecasting eliminates incorporation of certain demand growth rate drivers such as changes in technology, structural shifts in the economy or demography, and/or regulatory changes. Trending is most applicable within short-term forecasting (1-2 years).

Econometric forecasting investigates statistically significant historical relationships between economic variables and electricity sales or peak demand. Variables used to develop econometric relationships may include household income, electricity prices (by consumer group), prices for other household necessities, employment rates (by sector and sub-sector), labor productivity, tourism, industrial or agricultural output (measured in physical quantities or monetary terms),

commercial-sector output (by sub-sector), use of other fuels, and the prices of other fuels. Different statistical procedures can be used to test how accurately changes in one or more independent variables predict the value of the quantity to be forecast. In addition to testing the statistical significance of these relationships, econometric tools allow calculating the mathematical relationships among parameters. Once these statistically significant economic or demographic variables that affect electricity use or demand are identified and specified, projections for the driving variables are developed. These projections are used to derive the econometric forecasts of electricity use or peak demand. Factors that influencing electricity demand differ amongst different consumer categories. Therefore, econometric forecasts for electric energy use (as opposed to peak demand), are typically performed separately for each major consumer group, then aggregated to estimate system-wide sales.

End-use forecasting builds up estimates of electricity needs starting with an analysis of what electricity is used for by the different consumer categories. An end-use model of household electricity use might include separate estimates of electricity used for lighting, water heating, space heating, air conditioning, fans, cooking, entertainment, and other appliances. Using the example of air conditioning, one can specify a relationship between end-use variables:

Electric Energy Use for Air Conditioning = $H \times F \times AC \times EI$

Equation 1: End-Use Demand Forecasting

Where: H = Number of households

F = Fraction of households with air conditioners

AC = Amount of cooling required per household

EI = Energy intensity of average air conditioner model in use

In this example, one can forecast energy usage by projecting each of the four parameters on which air conditioning electricity usage depends. End-use forecasts can be prepared using spreadsheet software, or using customized forecasting software packages⁷, which are widely available.

End-use approaches have several advantages. They can be quite detailed, providing more information for planners. They provide integrated forecasts of both energy and peak power demands. The assumptions used in forecasting are usually easy to follow, check, and revise as new data become available. End-use forecasts provide an excellent framework for estimating the impacts of energy-efficiency options and demand-side management by making changes to parameters used in the baseline forecast. In the example used above, for instance, the analyst can change the assumed energy intensity of air conditioners to reflect introduction of more efficient units. On

⁷ E.g. the International Atomic Energy Agency (IAEA) developed tool – Model for Analysis of Energy Demand (MAED).

the other hand, end-use forecasts are extremely data-intensive. Surveys of different types of buildings are usually needed to collect good data on energy end-uses.

Demand analysis methodologies vary depending on the availability and granularity of data available. Selection of an appropriate demand analysis methodology depends on the availability and specificity of data available, i.e. end-use forecasting methods is best used once end-use data is comprehensive and available, while trending can serve as appropriate for countries whose demand grows with increased electrification rate as is the case for Rwanda.

Since the future is inherently uncertain, a base case is prepared along with several alternative (high and low growth scenarios) forecasts of energy and peak demand. The base case might be the best annual growth estimate with the alternatives catering to visionary projections such as high or low economic and/or population growth assumptions. These alternative scenarios provide room for sensitivity analyses, i.e. an assessment of the impact of changes in the assumed value of key parameters and can be used to evaluate whether the base scenario is sufficiently flexible for cost-effective modification, even if demand is higher or lower than anticipated.

A study done by the Rocky Mountain Institute and supplemented by further historical data revealed a direct (1:1) correlation between GDP growth and growth in electricity consumption per capita in Rwanda as shown in 25-year historical data below.

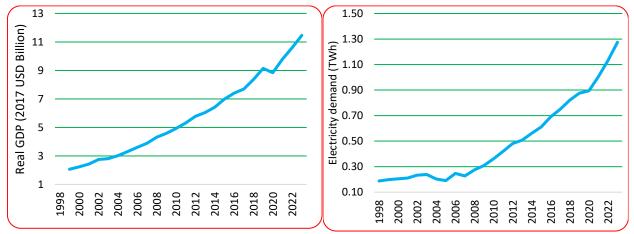


Figure 2: Rwanda Historical GDP and Electricity Consumption Data.

An additional study conducted by Israel Electric Company considered different annual growth rates of 8% (*low growth*), 10% (*base case*) and 12% (*high growth*) due to the uncertainty of forecasts. Electricity demand forecasts were then calculated in line with recent historical trends, using existing hourly load curves for the years 2017-2023. Peak and energy demand forecasts over the next 27 years were calculated as shown in table 1 below.

 Table 1: Annual Peak Demand & Energy Demand Growth for Different Growth Rates

	Scena	rio: 8% growth	vth Scenario: 10% growth Scenario: 12% growth		Scenario:	10%, 5% growth		
Year	Peak demand (MW) (8% growth)	Total Electricity Demand (GWh) (8% growth)	Peak demand (MW) (10% growth)	Total Electricity Demand (GWh) (10% growth)	Peak demand (MW) (12% growth)	Total Electricity Demand (GWh) (12% growth)	Peak demand (MW) (5% after 2030)	Total Electricity Demand (GWh) (5% growth after 2030)
2016	119	690.0	119	690.0	119	690.0	119	690.0
2017	134	750.0	134	750.0	134	750.0	134	750.0
2018	139	821.0	139	821.0	139	821.0	139	821.0
2019	147	876.0	147	876.0	147	876.0	147	876.0
2020	155	895.0	155	895.0	155	895.0	155	895.0
2021	171	1005.0	171	1005.0	171	1005.0	171	1005.0
2022	185	1131	185	1131.0	185	1131.0	185	1131.0
2023	211	1275	211	1275	211	1275	211	1275
2024	228	1377	232	1403	236	1428	232	1403
2025	246	1487	255	1543	264	1599	255	1543
2026	266	1606	281	1697	296	1791	281	1697
2027	287	1734	309	1867	332	2006	309	1867
2028	310	1873	340	2054	372	2247	340	2054
2029	335	2023	374	2259	417	2517	374	2259
2030	362	2185	411	2485	467	2819	411	2485
2031	391	2360	452	2734	523	3157	432	2609
2032	422	2549	497	3007	586	3536	454	2739
2033	456	2753	547	3308	656	3960	477	2876
2034	492	2973	602	3639	735	4435	501	3020
2035	531	3211	662	4003	823	4967	526	3171
2036	573	3468	728	4403	922	5563	552	3330
2037	619	3745	801	4843	1033	6231	580	3497
2038	669	4045	881	5327	1157	6979	609	3672
2039	723	4369	969	5860	1296	7816	639	3856
2040	781	4719	1066	6446	1452	8754	671	4049
2041	843	5097	1173	7091	1626	9804	705	4251
2042	910	5505	1290	7800	1821	10980	740	4464
2043	983	5945	1419	8580	2040	12298	777	4687
2044	1062	6421	1561	9438	2285	13774	816	4921
2045	1147	6935	1717	10382	2559	15427	857	5167
2046	1239	7490	1889	11420	2866	17278	900	5425
2047	1338	8089	2078	12562	3210	19351	945	5696
2048	1445	8736	2286	13818	3595	21673	992	5981
2049	1561	9435	2515	15200	4026	24274	1042	6280
2050	1686	10190	2767	16720	4509	27187	1094	6594

An additional econometric assessment and forecast of annual consumption growth rates based on the available data on residential consumer consumption levels and electrical appliance use provided an estimate of 9.8% for the years 2016-2050. Bearing the uncertainties associated with demand forecasting and the different results presented by these studies, annual electricity demand is broken down into 5 years medium term spans revealing different growth levels ranging from the lowest: 4.97% during 1998-2003, to the highest ever of 14.45% during 2008-2013. With the overall average growth of 8.44% over the past 25 years consistent with the implementation of the current strategic plan, 9.20% demand growth during 2017-2023, a 10% annual electricity demand growth rate is used for Rwanda's generation expansion scenario development and expansion planning with sensitivity analyses conducted on a bound between 5% and 10% annual demand growth since 2030 onwards as presented in section 6.3. Figure 3 below illustrates the forecasted energy and peak demand growth.

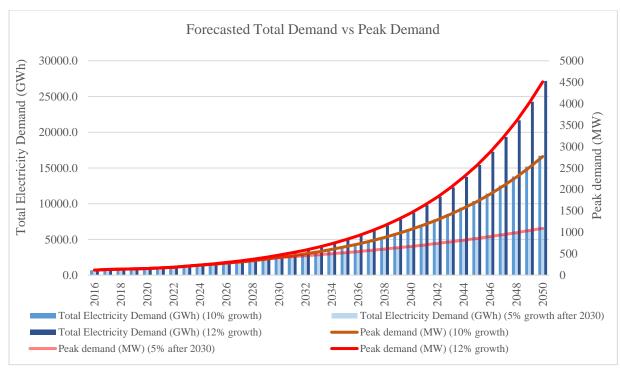


Figure 3: Forecasted Total Demand and Peak Demand

4. Existing Generation Plants

Table 2 provides a list of the existing generation plants within Rwanda, as well as their associated characteristics.

Table 2: Existing generation plants

No	Plant Name	Installed	Capacit	Available	Owner	COD	Type of
		Capacit	y Factor	Capacity			Technol
		y (MW)	(%)	(MW)			ogy
1	Ntaruka	11.25	33.61	3.8	GoR	1959	Hydro
2	Mukungwa I	12	61.56	7.4	GoR	1982	Hydro
3	Nyabarongo I	28	68.54	19.2	GoR	2014	Hydro
4	Gisenyi	1.7	65	1.1	Prime Energy Ltd	1957	Hydro
5	Gihira	1.8	70	1.3	RMT	1984	Hydro
6	Murunda	0.1	45	0.0	Repro	2010	Hydro
7	Rukarara I	9	40	3.6	Ngali Energy	2010	Hydro
8	Rugezi	2.6	50	1.3	RMT	2011	Hydro
9	Keya	2.2	50	1.1	Adre Hydro&Energicotel	2011	Hydro
10	Nyamyotsi I	0.1	0	0.0	Adre Hydro&Energicotel	2011	Hydro
11	Nyamyotsi II	0.1	0	0.0	Adre Hydro&Energicotel	2011	Hydro
12	Agatobwe	0.39	35	0.1	Carera-Ederer	2010	Hydro
13	Mutobo	0.2	45	0.1	Repro	2009	Hydro
14	Nkora	0.68	50	0.3	Adre Hydro&Energicotel	2011	Hydro
15	Cyimbili	0.3	50	0.2	Adre Hydro&Energicotel	2011	Hydro
16	Gaseke	0.5	90	0.5	Novel Energy	2017	Hydro
17	Mazimeru	0.5	49	0.2	Carera-Ederer	2012	Hydro
18	Janja	0.2	80	0.2	RGE Energy UK ltd	2012	Hydro
19	Gashashi	0.28	40	0.1	Prime Energy Ltd	2013	Hydro
20	Nyabahanga I	0.2	55	0.1	GoR	2012	Hydro
21	Nshili I	0.4	0	0.0	GoR	2012	Hydro
22	Rwaza Muko	2.6	60	1.6	Rwaza HydroPower Ltd	2018	Hydro
23	Musarara	0.4	49	0.2	Amahoro Energy	2013	Hydro
24	Mukungwa II	3.6	73	2.6	Prime Energy Ltd	2013	Hydro
25	Rukarara II	2.2	52.5	1.2	Prime Energy Ltd	2013	Hydro
26	Nyirabuhombohom bo	0.65	35	0.2	RGE Energy UK ltd		Hydro
27	Giciye I	4	40	1.6	RMT	2013	Hydro
28	Giciye II	4	40	1.6	RMT	2016	Hydro
29	Giciye III	9.8	40	3.9	RMT	2020	Hydro
30	Rukarara V Mushishito	5	60	3.0	Omni Hydro Ltd	2019	Hydro
31	Rubagabaga	0.45	61	0.3	Rubagabaga Hydropower Ltd	2019	Hydro
32	Nyirantaruko	1.84	65	1.2	SPV Nyirantaruko	2020	Hydro

No	Plant Name	Installed Capacit y (MW)	Capacit y Factor (%)	Available Capacity (MW)	Owner	COD	Type of Technol ogy
33	Kigasa	0.27	37	0.1	LED Solutions & Green Energy Rwanda Ltd	2020	Hydro
34	Mukungu MHPP	0.02	60	0.0	GoR	2020	Hydro
35	Kavumu-Mwange	0.33	60	0.2	REGREPOWER	2023	Hydro
36	Ntaruka A	2.00	60	1.2	Ngali Energy	2023	Hydro
	S-total	109.7		59.4			
37	Jabana 1	7.8	95	7.4	GoR	2004	Diesel
38	Jabana 2	21	95	20.0	GoR	2009	HFO- Diesel
39	SO Energy	0	95	0.0	So Energy&SP	2017	Diesel
	S-total	28.8		27.4			
39	Gishoma	15	85	12.8	Gasmeth Energy Ltd	2016	Peat
40	Hakan	70	37	25.9	Hakan	2021	Peat
	S-total	85		38.7			
41	Kivuwatt Phase I	26.19	91.03	23.8	Contour Global	2016	Methane
42	KP1	3.6	0	0.0	GoR	2009	Methane
43	SPLK	50	100	50.0	SPLK Ltd	2023 ⁸	Methane
	S-total	79.8		73.8			
43	Jali	0.25	14.00	0.0	Mainz Stadwerke/Local Agency	2007	Solar
44	GigaWatt	8.5	17.08	1.5	Gigawatt Global	2013	Solar
45	Nasho Solar	3.3	16.08	0.5	GoR	2017	Solar
	S-total	12.05		2.0			
46	Mururu 1	4.1	95	3.9	SNEL Sarl	1957	Imports
47	Mururu II	12	95	11.4	SNEL Sarl	1957	Imports
48	Gatuna	2	95	1.9	UETCL	2016	Imports
49	Mbarara	40	95	38.0	UETCL	2023	Imports
50	Rusumo	26.7	95	25.4	Rusumo Power Company Ltd	2023 ⁹	Imports
	S-total	84.8		80.6			
	Grand Total	400		281.9			

The resulting energy mix is shown in *Figure 4* below. Thermal, units, especially HFO/diesel, have been contributing a considerable share to the energy mix between 2005 and 2016, but since the NST-1 program cycle, the contribution of thermal reduced from baseload to currently emergence use and peak balancing only. For the past two years, these units, were operated during peak hours due to their high operation cost. REG continues to ensure maximum use of cheaper hydro power options, and these are supplemented by peat fired PPs and Solar PVs in pipeline especially during dry seasons where hydro power generation falls to their lowest capacity factors.

⁸ Pre-COD dispatch for SPLK started in March 2023, Full COD expected in 2024.

⁹ Pre-COD dispatch for Rusumo Shared HPP started in September 2023, Full COD expected in 2024.

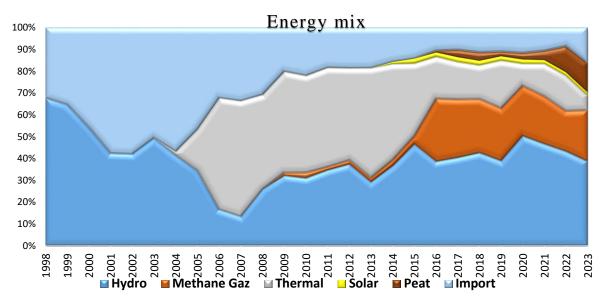
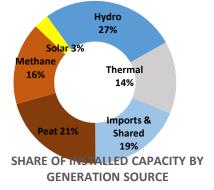



Figure 4: Evolution of the electricity generation mix

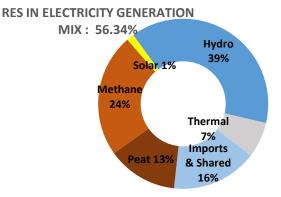


Figure 5: Share of installed capacity by energy source

Figure 6: Current power generation mix

The total generation capacity has increased to 400 MW from the previous 311 MW. More specifically, the following changes were made in the fleet of installed power generation capacity in 2023:

Table 3:	Recently	commissioned PPs
----------	----------	------------------

#	Power Plant	Installed Capacity (MW)	Technology Type
1.	UETCL Imports (Mbarara -Shango)	40	Import
2.	Shema Power Lake Kivu (SPLK)	50	Methane
3.	Rusumo Regionally shared Power Plant	26.7	Hydro/Import
4.	Kavumu-Mwange	0.33	Hydro
5.	Ntaruka A	2	Hydro
	TOTAL	119.03	

Table 4: Decommissioned power plants

#	Power Plant	Installed Capacity (MW)	Technology Type
1.	SO-Energy	-30	HFO/Diesel
	TOTAL	-30	

5. Planned Generation Projects

To reduce the high levels of dependence on diesel power generation, different generation expansion scenarios were created and modelled (including interconnection to the Ugandan grid as the recent 40 MW import contributed to the reduction of diesel dependency) while awaiting smooth on-boarding of Rusumo Regional HPP and SPLK). This allows envisioning the use of different technologies to generate electricity on the Rwandan grid. Commissioning dates of key near-term planned projects (outlined in table *5below*) were also used to determine an optimal generation mix for the country in the medium term.

#	Power Station	Nominal Capacity (MW)	Planned COD		
	Non-renewable power plants				
1.	Kivuwatt Phase_2 extension	9	TBD		
2.	SPLK Phase_2 extension	28	TBD		
	Hydro Stations<=5MW				
3.	Izuba CB Energy Rwanda	4.13	2025		
4.	Nyirahindwe 1	0.909	2025		
5.	Nyirahindwe 2	0.359	2027		
6.	Muvumba Multipurpose Dam	1	2027		
7.	Ngororero	2.7	2027		
8.	Nyundo	4.5	2027		
9.	Rwondo	2.3	2027		
10.	Base 1	2.9	2027		
11.	Kore	1.3	2025		
12.	Rucanzogera	1.9	2028		
13.	Rukore	2	2028		
14.	Bihongore	4.22	TBD		
	Hydro Stations>5MW				
15.	Rukarara VI	9.76	2027		
16.	Nyabarongo II	43.5	2027		
	Regional Projects (hydro)				
17.	Rusizi III	68	2031		
18.	Rusizi IV	95.9	TBD		

Table 5: Planned Generation Projects (Committed)¹⁰

Other committed & generic generation additions that are scenario-specific are presented in Table 8, section 8.1 of Installed Capacity and Peak Demand under Reference scenario.

¹⁰ TBD : To Be Determined.

5.1. Planning Alternatives for Generation System Expansion

In selecting appropriate technological supply alternatives for the expansion of the Rwandan electricity generation system, the following important aspects are to be considered:

- Rwanda is endowed with a myriad of natural resources, the most dominant of which include water, sunshine, and methane at the bottom of Lake Kivu and peat reserves in the southern part of Rwanda. It is therefore important that these resources are identified and utilized for electricity production in the most cost-efficient manner, while meeting demand and reserve margin needs. This LCPDP is dedicated to identifying the potential output from maximum and economically feasible utilization of national resources, based on cost variables such as extraction costs/emissions constraints, where applicable.
- Currently, peak demand and reserve during peak are served by mainly dieselpowered power plants and imports), as well as seasonal inputs from the big hydro storage power plants on the system.
- A power network analysis ¹¹ was done on existing and planned interconnectors (including planned power plants per technology type per country), amongst the 6 Nile Equatorial Lakes Subsidiary Action Plan (NELSAP) member countries, i.e., Burundi, Democratic Republic of Congo, Kenya, Rwanda, Tanzania and Uganda to evaluate the potential future behaviour of the interconnected system over the period 2016 2021. Results from this analysis showed countries with potential to be both peak and off-peak customers for excess power from Rwanda up to 2021. This therefore was one of the key scenarios considered within the plan power trade as a strategy to increase company earnings.
- In line with the Paris Agreement and Sustainable Development Goal no. 7 set by the United Nations (i.e. affordable and clean energy), existing policies within the Rwanda energy sector target increased contribution of renewable energy to the national electricity production. A policy target of 60% by and after 2030¹² was set to ensure alignment with global trends towards decarbonization of the energy sector. This was therefore an important factor to consider during scenario development. Within all developed scenarios, compliance with this ambitious target was monitored throughout the planning horizon.
- Rwanda's national power system is still small. Despite its high growth rate relative to developed countries, annual addition of the generating capacity required to expand the system is still very small, and mainly for purposes of serving the peak demand which lasts for an average of 3 hours every day.

¹¹ The full scope of this report includes power system analysis (static and dynamic), load flow calculations,

optimal load flow, short circuit current calculations, & transient and small-signal stability simulations.

¹² Energy Sector Strategic Plan (ESSP) & SE4All Rwanda Action Agenda

This reduces the ability of the electricity sector to benefit from economies of scale through construction of new large generating units.

- High specific investments in the construction of small power plants will inevitably lead to high electricity generation costs. The cost of electricity production by means of solar PV technologies has declined significantly in recent years and this trend is set to continue thus it is this potential option to consider. Solar electricity generation using PV is becoming cost-competitive against fossil fuels even in large interconnected systems in developed countries. Under extremely expensive electricity production conditions in Rwanda (due to its geopolitical situation), solar production may become even more competitive and may contribute to lower electricity prices.
- In Rwanda, at present, and due to the large share of domestic sector in total electricity demand, the daily peak load occurs in the evening. These hours have the greatest impact on the reliability of electricity generation and on the needs of generating capacity expansion in the system. Solar generation is not available during evening hours, when generating capacity is most required. In this case, the possibility of integrating energy storage facilities to increase generating capacity in the evening while utilizing solar energy stored during the day was examined and found to be a key consideration, especially in latter half of the planning horizon.
- Rwanda experiences a bimodal pattern of rainfall, which is driven primarily by the progression of the Inter-Tropical Convergence Zone (ITCZ). The ITCZ follows the annual progression of the sun as it goes to the Northern Summer when the sun crosses the equator around March 21, and the Southern Summer around September 23 each year. The two rainy seasons are generally distinguishable, one (wetter) around March May and the other around October December. Rainfall characteristics for Rwanda exhibit large temporal and spatial variation due to varied landscape and large water bodies near the country. The highest rainfall is observed in the northern & western parts of the country, resulting in rich hydrological resources within those regions of the seasonal nature of production of hydropower plants which make up close to 50% of the current electricity supply of the country. This contributes to the increased complexity of modelling the Rwandan power supply system.

5.1.1. Future Plans

• A nationwide resource study has been conducted to have a deeper and more recent understanding of all the resource potential that exists in Rwanda that can be exploited for electricity production. The results from this resource study have been used in this update and will continue to be used in subsequent LCPDP updates. With a focus on renewable resources, this study estimated physical availability, technical potential, economic as well as

market potential of seven generation resources, namely hydro, solar, wind, peat, methane, waste/biomass, and geothermal.

• To further consolidate the gains achieved in least cost generation planning, a climate change mitigation assessment will be conducted with emphasis on decarbonisation policy scenarios to enrich future LCPDP updates with an economy-wide assessment to achieve net-zero GHG emissions by 2050. By reviewing the current status and future trends of GHG emissions in Rwanda, this assessment should contribute to the identification of suitable policy options.

6. Least Cost Generation Expansion Planning Methodology:

The key issues to address during the development of a least-cost generation expansion plan include how much new generation capacity is required, the optimal time to add new generation capacity and which supply technology should be added, given certain policy requirements or alternative energy targets. A long-term generation expansion plan was made using the Model for Energy System Supply Alternatives and their General Environmental Impacts (MESSAGE).

MESSAGE combines different supply technologies through the construction of energy chains. The entire process of energy flows is therefore mapped out from resource extraction and conversion (*supply*) to transmission and distribution of energy services (*demand*).

The underlying principle of the model is <u>the optimization of an objective function</u> (in our case least-cost expansion: the discounted cost of energy supply from various sources) under defined constraints.

The major equations used to calculate the least-cost capacity addition road map within MESSAGE include:

<u>Objective Function</u>: **minimize cost of production while adding generation capacity**, i.e.

$$n = 1, 2, ..., n \sum (C1X1 + C2X2 + \dots + CnXn)$$

Equation 2: Objective Function

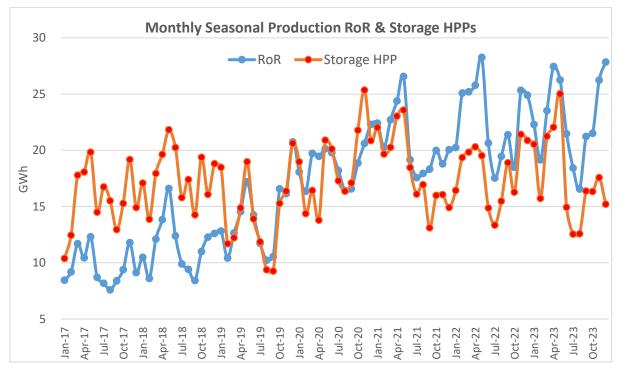
Where: C = total cost, X = supply alternative annual added capacity. This objective function is subject to the following main equations:

1. <u>Demand Equation</u>: Supply \geq Demand, i.e.

 \sum Supply $\geq \sum$ Demand at all points in time.

Equation 3: Demand Equation

2. <u>Balance Equation</u>: All supply options ≥ Supply from (previous) demand equation. The sum of all supply sources at each node of the system network must balance, i.e.


 \sum Production - \sum Consumption ≥ 0 at all levels of energy supply in the network and must meet demand at all moments in time based on available supply (variable or otherwise) and demand.

Equation 4: Balance Equation

- 3. <u>*Resource Equation*</u>: The amount of exhaustible resource used to build capacity must be less than the number of existing reserves input within the model.
- <u>Capacity (& Production) Equation:</u> Supply Option ≤ Capacity factor (CF) X installed capacity of plant. For additional capacity installation: Supply Option ≤ CF X (Historical Capacity + New Capacity). New capacity is therefore added in a least-cost way.
- 5. <u>User defined equations and/or constraints:</u> e.g. CO₂ emission caps, reserve margin, import cap, RES constraint in annual production, et.c. Within the Rwandan context, some of the user-defined equations and constraints include: 15% reserve margin, maximum installed capacity of existing power plants, rehabilitation equations, etc.

MESSAGE has the unique ability of modelling seasonal (renewable) supply alternatives through the use of seasonal supply divisions¹³, which suits the hydro dominant supply existing within Rwanda¹⁴, as shown in figure 7 below.

Figure 7: Hydro Power Plant Seasonal Variation

Hourly availability and production profiles of hydro and solar power plants were obtained, consolidated and the resulting operation regimes were fed into individual power plants such that their seasonal variation was captured in the most accurate way possible. The results were therefore not only based on plant design

¹³ This is done through the use of load curves, i.e. hourly output per power plant relative to installed capacity for (variable) renewable power plants.

 $^{^{\}rm 14}$ See total installed capacity vs firm capacity difference in Table 2

specifications but also on the current (hourly) seasonal situation experienced in Rwanda.

6.1. Model Inputs:

Data requirements for a least-cost expansion supply study requires a broad data set with as much information as possible to provide a more accurate depiction of the existing system. This data set must consist of all energy forms used in the country and all energy conversion processes (technologies).

6.1.1. Data determining the structure of the energy system

Resources

These are exhaustible materials that are readily available for energy supply to the country through extraction, imports or any other identified means. Examples include oil, gas, peat deposits, etc. Information on available quantities all of resources and the costs associated with the exploitation of these resources (extraction and/or import costs) are the main inputs. The key resources making up the energy expansion options include:

Peat: Peat generation is currently limited to Gishoma and Hakan, with a combined nominal capacity of 85 MW, of which Hakan peat-to-power plant is the largest power station in Rwanda, with a nameplate capacity of 70MW. A 2016 report concluded that from the 13,571 ha area studied, approximately 23 - 33 million dry tonnes of peat can be produced from an exploitable area of 4,057 ha. This peat can produce between 97 - 129 TWh over 30 years, at an estimated level of between 121 - 161 MW¹⁵.

Methane gas: Methane gas contained within Lake Kivu is Rwanda's largest natural resource. Formation of these reserves was due to the unique geology of the lake, resulting in the naturally regenerating methane gas that is found there. Lake Kivu contains 60-70 km³ of methane, of which 44.7 km³ can be extracted, with an annual accumulation of 0.14 km³. The amount of electricity that can be generated from this methane depends on extraction efficiency. This efficiency is currently estimated at 28%, which is significantly lower than the expected 40-60%. Currently, the main focus concerning this resource is its extraction for electricity generation. However further investigations are currently underway to fully understand its potential applications in the commercial, industrial and residential sectors of the country.

Hydro power: Rwanda is located within the equatorial belt; its climate is strictly not of the equatorial rainy type. It has a modified humid climate including rainy forest and Savannah types. The central and eastern part of the country is generally of semi-arid type owing to its position in the rainy shadow of the western highlands. These seasonal rainfall patterns are the main driver behind the seasonal nature of production of hydropower plants which make up close to 50% of the current

¹⁵ Rwanda ESSP 2018.

electricity supply of the country. This contributes to the increased complexity of modelling the Rwandan power supply system.

Wind energy: A rapid wind energy resource assessment was carried out in Rwanda in five locations over the course of 2011. Preliminary indications from the analysis of recorded field measurements of wind speeds and climate data were that most of Rwanda is not highly suitable for wind energy. The Eastern Province was identified as the location with the most promising potential. Another academic study using modelling analyses based on recorded wind measurements at selected Rwandan meteorological stations noted that electricity production in the area of the Gisenyi station could be possible with a good mean value of both wind speed and power density. In contrast, in areas such as Kigali, Butare and Kamembe, wind energy potential is only enough for windmills or water pumping for agricultural and intuitional needs.

Solar energy: Rwanda's solar radiation and solar resources have been assessed by the U.S. National Air and Space Agency (NASA) as well as the University of Rwanda. Rwanda's Eastern Province has the greatest potential for generating energy from solar resources. The International Renewable Energy Agency (IRENA) published a study identifying potential high-yield solar PV zones within the Africa Clean Energy Corridor. These findings for each zone within Rwanda were identified, such that all site-specific production activity was modelled as accurately as possible. Another academic assessment, undertaken in partnership with the MININFRA Department of Meteorology in 2007, used meteorological data set to estimate monthly averaged global solar radiation. This was found to vary from 4.3 - 5.2 kWh/m²/day throughout the country.

Geothermal: Geothermal energy refers to the heat found within the earth. This can be harnessed by drilling into the ground and using steam to drive generators. Rwanda's geothermal resources are yet to be proven. However, studies have identified Karisimbi, Kinigi, Gisenyi and Bugarama as promising areas.

Waste/biomass: Small-scale power generation using agricultural residues (such as bagasse or rice husks) or biomass briquettes (from compacted waste residues or charcoal dust) is feasible, but at rather low levels of capacity.

Import/Export options: these are considered as alternative to supply peak demand which is usually supplied mostly by diesel-powered plants, which makes importation of diesel a priority to the power generation. In addition, the discovery of natural gas reserves off the coast of neighboring Tanzania, interest throughout Rwanda has been sparked concerning tapping this resource at a relatively cheap cost for several purposes.

• Sources of Energy

Non-exhaustible/renewable resources such as solar, hydro, biomass, geothermal, etc are modelled differently for the majority of energy models. In terms of available quantities, the data requirements for renewable energy sources include average

annual resource availability measured in standard units as well as seasonal changes in energy quantity available throughout the year. This assists in capturing the intermittency of the energy output from these sources and accurate modelling of the renewable portion of the energy system supply.

• Existing energy conversion technologies – Techno-economic Data

Technical characteristics include:

- i. **Inputs** (e.g., natural gas, nuclear fuel, electricity).
- ii. Outputs (e.g., electricity, heat, etc.)

iii. Conversion efficiency characteristics (e.g., heat rate, efficiency, losses, etc.)

iv. Conversion capacity parameters (i.e., installed capacity).

v. Any other technical aspects and/or assumptions as deemed relevant by the

modeller.16

Economic characteristics include:

- i. **Investment costs** for existing technologies (i.e. technologies already in operation at the beginning of the planning horizon) investment costs are not important as equipment is already in place. However, if an existing technology is considered for future expansion/rehabilitation, appropriate investment costs must be provided (as well as forecasted operational costs reductions from rehabilitation of existing technology).
- ii. **Fixed costs**¹⁷ costs related to installed capacity (these costs exists even when technology is not producing/generating its output).
- iii. **Variable costs** costs related to a technology output (these costs exists when technology is producing/generating its output).

Environmental impacts can also be modelled within MESSAGE, along with any policy relevant constraints on emissions, where relevant. Input data information can include emission quantities due to land use, water use, air pollutants such as SOx, NOx emissions from particular technologies, etc.

6.1.2. Data describing energy system development options

• Demand analysis and projections

Demand in MESSAGE is provided exogenously as an annual value for all years/periods during the planning horizon.

¹⁶ e.g. forced outage rates, load curves for seasonal output, maintenance periods, refuelling periods, lifetime,

degradation of technical characteristics during lifetime, rehabilitation plans, plant factor, operation time and lifetime.

¹⁷ This was used to model the take-or-pay contracts PPA structure that exists within the Rwandan context.

Candidate/expansion/future energy conversion technologies - technical, economic and environmental data

The data required for candidate future technologies is equivalent to those for the existing ones. Representation of planned power plants and/or future expansion technologies is modelled within MESSAGE. Additional required data for non-existing but planned technologies can include the earliest year from when this technology is envisaged to be available, limits (upper and lower bounds) on installed capacity, as well as construction time.

New alternative supply technologies were also considered and added to the model. These include:

- i. Solar PV (grid-connected utility-storage)¹⁸.
- ii. Hydro Pumped Storage.
- iii. Waste-to-Power/Biomass Generation.
- iv. Battery Storage Systems.
- v. Natural Gas Fired PPs¹⁹.
- vi. Methane Power Plants Capacity Addition²⁰.
- vii. Peat Power Plant Capacity Addition^{21.}
- viii. Nuclear Power Plant Capacity Addition.
- ix. Geothermal
- x. Green Hydrogen
- xi. Distributed Wind generation

6.1.3. Other user-specified data

Anything that is relevant to the objective of the supply alternative study. For the Rwandan context, these include additional equations such as import/export, policy targets for renewable energy penetration into the supply mix, base year, planning horizon, time resolution (e.g., annual analysis, five-year steps), currency, discount rate, reference year for costs, and other data (e.g., energy supply/take-or-pay contracts, etc.)

6.2. Options for data presentation in MESSAGE:

For even more increased accuracy within MESSAGE, options are provided for data presentation. These include:

1. **Constant** ©: a constant value that is assumed to remain constant throughout the planning horizon.

²⁰ Exploitation of existing methane reserves in the country.

¹⁸ Use of identified high-yield solar zones in Rwanda from the International Renewable Energy Agency (IRENA). High yield solar zones were best determined considering several factors, e.g. distance to transmission line/substations/load centres/roads, solar irradiation, population destiny, etc.

¹⁹ Plans to construct a pipeline to import natural gas from Tanzania to Rwanda are underway. Therefore, potential use and construction of natural gas-fired power plants as a supply alternative was considered.

²¹ Exploitation of existing peat within the country.

- 2. **Time series (ts)**: a value set for a certain number of years within the planning horizon.
- 3. **Constant growth (cg)**: one growth rate uniformly applied throughout the entire planning horizon.
- 4. **Period growth (pg):** a set of growth rates for different time periods within the study and over the entire planning horizon.

This is valid for all data used in MESSAGE and is advantageous due to the ability to model all inputs such as costs, demand, and plenty of other technical information as envisioned to change over the entire planning horizon.

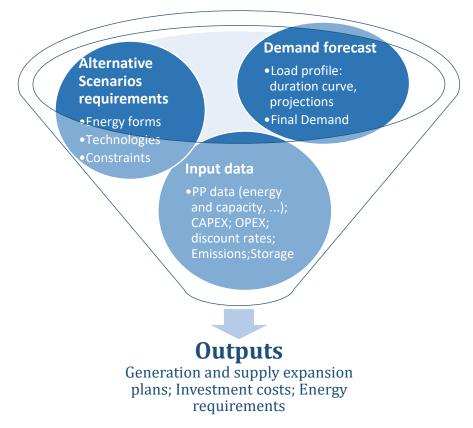


Figure 8: Processes in MESSAGE

6.3. Generation Expansion Scenarios:

This version of the LCPDP expands export possibilities as well as demand forecasts for even lower costs and higher profits for the company. An analysis of different scenarios using demand growth forecasts, and various resources combination in the generation fleet and times as key factors to find the least cost development path was conducted.

All scenarios were simulated with their different conditions and ran; the least cost development path/scenario was selected. The total generation cost per scenario was computed for each scenario and the least-cost option selected. A total of 8 scenarios are studied and a summary is presented in tables 4 and 5 below.

The reference scenario was constructed based on the current and near term features of the generation supply: dominance of hydro power generation, on-going or committed generation projects in the pipeline such as committed interconnections, In the latter half of the planning horizon, the generation supply gap is filled with imported natural gas. Diesel fuelled power plants are kept at 30 MW for emergency use.

 Table 6: Summary description of studied scenarios

ID	SCENARIO NAME	KEY SUPPLY CONSIDERATIONS/MAIN FEATURES				
1	Reference Scenario (Business As Usual)	 Demand growth: 10% till 2030, and 5% afterwards All existing PPAs and commitments by the GoR on upcoming PP, and projects in the pipeline Solar PV integrating storage, Imports & Exports are restricted (75 MW, and 30 MW throughout 2050) 				
2	Domestic Generation	 Demand growth: same as in Reference Scenario All existing PPAs and commitments by the GoR on upcoming PP, and projects in the pipeline. Domestic production, restricting Imports & Exports. 				
3	Power Trade & Interconnections	 Demand growth: as in Reference Scenario. All existing PPAs and commitments by the GoR on upcoming PP, and projects in the pipeline. Supply mainly driven by the penetration of imports/interconnections. 				
4	Renewables	 Demand growth: as in Reference Scenario. All existing PPAs and commitments by the GoR on upcoming PP, and projects in the pipeline. Supply restricted to Renewable technologies for upcoming PPs and projects in the pipeline. 				

For each supply-side scenario presented above, sensitivity is conducted with a high demand growth scenario of 10% annual growth throughout the horizon is modelled and tested (Scenarios 5-8) and the key results are presented in table 5.

The main objective of the *Reference Scenario* is to model and understand expansion in the business as usual. The *Domestic Generation* demonstrates the resilience of domestic generation supply to meet demand. The *Power Trade & Interconnections* scenario studies the implications of interconnections on generation supply. The *Renewables* scenario restricts new technologies additions to renewables. We use the *High Demand Growth* case to study the requirements of an accelerated growing demand on electricity supply generation, especially after 2030.

Table 7 below presents a summary comparison of different scenarios for selected key metrics to guide the understanding of the implications of different expansion paths.

Table 7: Summary comparison of various studied scenarios²²

Metric/Indicator		Reference Scer As Us		Domestic G	Generation	Power 1 Intercon		Renev	vables
		Δ(10%, 5% after 2030)	10% ∆ throughout						
Installed Capacity (MW)	2030	547	562	560	557	553	547	585	547
	2050	1494	3270	1539	3093	1518	3250	1331	3308
Total Domand (GW/b)	2030	2,489	2,186	2,477	2,300	2,477	2,312	2,602	2,312
Total Demand (GWh)	2050	6,540	16,627	6,797	16,822	6 <i>,</i> 539	15,897	6,977	14,927
Imports (GWh)	2030	197	32	0	0	6	197	6	197
	2050	460	547	0	0	388	1678	6	395
Panawahla anargy chara (%)	2030	72.7%	78.4%	70.0%	75.0%	69.1%	74.1%	71.1%	78.5%
Renewable energy share (%)	2050	63.2%	64.7%	61.4%	61.1%	84.5%	67.8%	73.1%	71.3%
Exports (C)M(b)	2030	17.89	9.13	0	0	17.89	17.89	0.37	17.89
Exports (GWh)	2050	17.89	9.13	0	0	35.41	44.17	0.37	131.77
Total Discounted Cost of Energy	2050	4,076.8	4,768.4	3,982.5	4,775.7	3,980.9	4,759.5	4,081.3	4,826.5
Supply (USD M)		4,070.8	4,708.4	3,302.3	4,775.7	5,500.5	4,759.5	4,001.5	4,020.3
Expansion scenario costs relative to		N/A	691.58	-94.28	698.9	-95.86	682.73	4.55	749.76
the Ref. scenario		95.86	787.44	1.58	794.74	0	778.59	100.41	845.62
and the least cost scenario (USD M)		95.80	787.44	1.30	734.74		778.55	100.41	843.02
Peak Demand (MW)	2030	397	397	397	397	397	397	397	397
	2050	1053	2670	1053	2670	1053	2670	1053	2670

Note: For each variable except the total discounted cost of energy supply, the first line corresponds to values in 2030 and the second line in 2050.

²² For each variable except the *total discounted cost of energy supply*, the first line corresponds to values in 2030 and the second line in 2050

7. December 2023 Assumptions & Updates

7.1. Assumptions:

Reference scenario key features:

- I. Demand forecast: 10% throughout 2050.
- II. Power trade/Interconnection throughout 2050:
 - a. Electricity imports of up to 80 MW.
 - b. Export of up to 30 MW.
 - III. Optimization of Existing Power Plants:
 - i. SPLK Phase_2: 28 MW
 - ii. Kivuwatt Phase_2 8-9 MW
 - iii. KP1: 3.6 MW
- IV. Introduction of technologies based on renewable energy sources in the longer term:
 - a. Utility-scale Solar PVs (with storage).
 - b. Hydro pumped storage.
 - c. Consumer-size electric batteries storage systems.
 - d. Green hydrogen generation technology.
 - e. Wind generation.
- V. Phasing off thermal (diesel fired PPs) based on BAS (national decarbonisation pathways, and economic dispatching), but retaining ≤ 30 MW for emergency use.

7.2. Updates:

- Update and realignment of CODs of power plants²³
- Model base year to 2023, with projections throughout 2050
- Updated demand assumptions/inputs (informed by Demand Analysis, (MAED, 2022) inputs and 5th RPHC Census key results)
- Consideration for utility-scale battery energy storages systems.
- Solar PV systems integrating storage.
- Integration of Generation Resource Assessment
 - a. Update cost estimates for solar PV and battery storages.
 - i. especially in the longer planning horizon to reflect the global declining trends in the cost of these technologies, and advances in capacities.
 - b. Generic distributed wind generation

²³ Nyabarongo_2 (CoD to 2027), Rusizi III (CoD to 2031), Nyirahindwe I & II (2025 & 2027), Nyundo (2027/8), Base I (2025), , Rwondo & Ngororero (2026).

8. Results

8.1. Installed Capacity and Peak Demand under Reference scenario 2024 – 2030

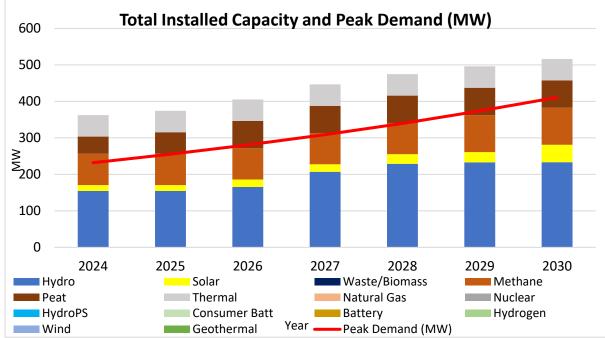
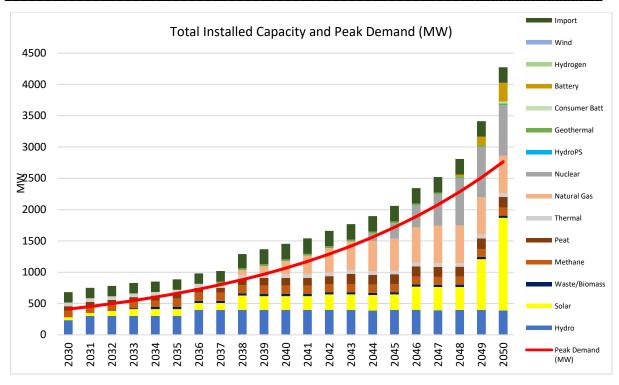


Figure 9 below shows the total domestic installed capacity over the next 6 years.

Figure 9: Total domestic installed capacity (MW) in the near term 2024-2030


- The installed capacity in the short term 2024-2030 is enough to satisfy the annual growing demand and reserve margin requirement.
- No imports beyond this year, as there is more than enough domestic capacity to satisfy the existing national demand.
- Total installed capacity of thermal (diesel) powered plants remains at 28.80 MW²⁴ throughout the planning horizon.
- Excess capacity of about 30 MW exists that can be used for battery charge/discharge or for export adds to domestic demand and significantly increases potential company earnings.

42030 - 2050

Figure 10 shows the evolution of total installed capacity of generation supply technologies on the Rwandan grid.

²⁴ Jabana I and II diesel-power plants.

Figure 10: Total Installed Capacity (MW) in the longer term- 2050.

New supply technologies are added onto the grid to satisfy demand. These include natural gas, utility-scale solar PV, consumer battery storages outlined below:

- i. Addition of 500 MW of natural gas installed capacity by 2050.
- ii. Addition of 15 MW of hydro pumped storage by 2050.
- iii. Addition of 30 MW of Generic Geothermal.
- iv. Addition of 1,492.85 MW of Solar PV embedded with storage.
- v. Addition of 37 MW of Waste to Power.
- vi. Addition of 222.01 MW of Hydro Power.
- vii. Addition of 880 MW of Nuclear SMR.

Annual addition of installed capacity per technology is shown in table 8 below.

In addition to committer projects presented in table 5, below we present technology specific additions in line with the Reference scenario.

Table 8: Annual Added Capacity (MW) per Technology Type

Year	POWER PLANT(S)	TECHNOLOGY ADDED	TOTAL CAPACITY ADDED (MW)
2027	Nyabarongo II (43.5 MW)	Hydro	43.5
2028	Committed Utility-Scale Solar PV (6 MW)	Solar	б
2029	Additional Imports	Imports	40
2031	Rusizi III (68 MW)	Hydro	68
2033	Generic Utility-Scale Solar PV with BESS (33.9 MW)	Solar	33.9

Year	POWER PLANT(S)	TECHNOLOGY ADDED	TOTAL CAPACITY ADDED (MW)
2033	Generic Waste-to-Power	Waste	22
2034	Generic Nuclear (SMR-NPP)	Nuclear	110
2035	Generic Waste to Power PP	Waste	15
2036	Rusizi IV (95.9 MW)	Hydro	95.9
2037	Generic Geothermal PP	Geothermal	30
2037	Generic Natural Gas fired PP	Natural gas	119
2038	Generic Solar PV (16.01 MW)	Solar	16.01
2039	Generic Solar PV with BESS (120 MW)	Solar	120
2039	Additional Imports 80	Imports	80
2040	Generic Utility-Scale Solar PV with BESS (61.5 MW)	Solar	61.5
2040	Nuclear (SMR-NPP)	Nuclear	220
2041	Hydro pumped storage (15 MW) Generic Natural Gas fired PP (262.9 MW)	Hydro PS Natural Gas	277.9
2042	Generic Utility-Scale Solar PV (28.8 MW)	Solar	28.8
2045	Generic Natural gas fired PP (117 MW)	Natural Gas	117
2046	Generic Utility-Scale Solar PV (124 MW) Generic Natural gas fired PP (91 MW)	Solar Natural Gas	215
2046	Nuclear (SMR-NPP)	Nuclear	440
2048	Generic Utility-Scale Solar PV (447.5 MW)	Solar	447.5
2049	Generic Grid-Scale Battery Storage	Battery	167
2049	Generic Utility-Scale Solar PV (674.2 MW)	Solar	674.2
2050	Generic Wind to Power (15 MW)	Wind	15

8.2. Electricity Production & Demand:

Figure 11 and table 9 provide a 5-year time step of the annual production profiles of each technology type during this planning horizon.

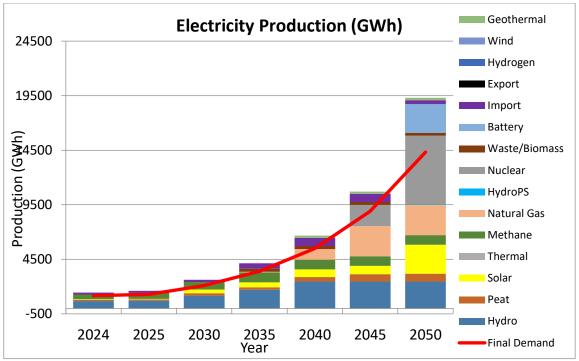
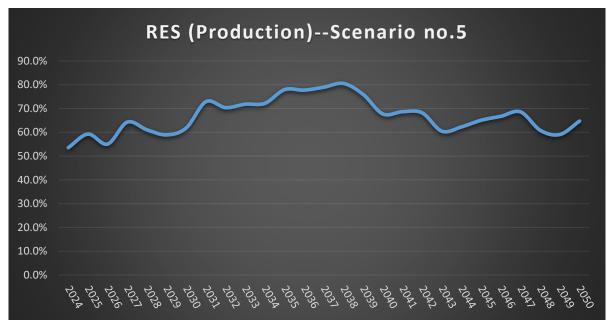


Figure 11: Production per Technology Type (GWh)

It is clear that hydro dominance persists throughout the planning horizon. Peat production also increases to satisfy the domestic demand. In addition, thermal requirements are eliminated. This is due to the least-cost selection of supply from imports within this time period. Production from hydro pumped storage begins and starts to contribute to the longer term, as installed capacity increases.


Year	2024	2025	2030	2035	2040	2045	2050
Domestic Production	1269.7	1427.9	2417.2	3633.5	5936.0	9972.4	19036.5
Hydro	669.0	706.1	1,174.5	1,715.8	2,464.2	2,464.2	2,462.4
Solar	56.1	56.1	333.7	461.7	698.5	758.1	2,658.5
Waste/Biomass	-	-	-	278.6	278.6	278.6	278.6
Methane	439.3	542.8	692.7	901.2	901.2	874.4	875.6
Peat	105.3	122.8	216.3	216.3	413.4	681.5	715.6
Thermal	-	-	-	-	-	-	-
Natural Gas	-	-	-	59.9	969.9	2,759.4	2,759.4
Nuclear	-	-	-	-	-	1 <i>,</i> 945.9	6,307.2
HydroPS	-	-	-	-	-	-	50.0
Geothermal	-	-	-	-	210.2	210.2	210.2
Consumer Batt	-	-	-	-	-	-	91.0
Battery	-	-	-	-	-	-	2,628.0
Hydrogen	-	-	-	-	-	-	-
Wind	-	-	-	-	-	-	-
Import/Export	170.3	168.6	183.1	484.4	718.0	718.0	336.3
Import	185.0	187.1	201.0	502.2	735.8	735.8	354.2
Export	(14.7)	(18.4)	(17.9)	(17.9)	(17.9)	(17.9)	(17.9)
Total Supply	1439.9	1596.5	2600.3	4117.8	6653.9	10690.4	19372.9

Year	2024	2025	2030	2035	2040	2045	2050
Final Demand	1169.4	1297.2	2091.2	3399.9	5507.7	8902.4	14323.9
Total Demand	1411.2	1565.3	2540.1	4057.6	6549.9	10586.3	16824.3

8.3. Renewable Energy Share (RES) in Total Power Production

Figure 12 below shows the renewable energy share (RES) in power production throughout the planning horizon. The ESSP targets set were met during this time horizon.

Figure 12: RES in Power Production (%)

In the short-term higher levels of peat production decrease RES contribution. However, in the longer-term performance improves this performance as more hydro is added and dispatched within the system. Compliance with this policy target requires further monitoring to ensure that Rwanda remains committed to decarbonizing power production.

9. Climate Change & Impact on Hydropower Production²⁵

9.1. Introduction

Climate change can threaten the viability of future hydropower development and operations. To understand the potential risks and vulnerabilities of hydropower plants to climate change the below modelling framework.

²⁵ Study done by <u>Ms Ana Caceres, Ph.D. Candidate, Department of Engineering and Public Policy Department of Civil and Environmental Engineering, Carnegie Mellon University</u> under the E-Guide Project. Data source: REG.

Hydropower can help achieve electrification goals while minimizing greenhouse emissions. Additionally, hydropower can help balance intermittent renewables (e.g., solar and wind) to meet the country's growing electricity needs. Unfortunately, climate change can threaten the viability of future hydropower development and operations. Given the limited research on climate-induced risks to hydropower plants in Sub Saharan Africa (SSA), this work aims at increasing the knowledge and understanding about the potential effects that climate change is likely to pose on hydropower in Rwanda, given the current and future predicted hydro dominance of the grid.

A flexible data requirement climate risk and vulnerability framework for hydropower assessment under climate change is applied to Rwanda. The initial analysis for Rwanda includes seven cascading hydropower plants. *table 10* presents the list of the power plants and their main characteristics (information provided by the Rwanda Energy Group - REG). These power plants include the Rusumo Regional Hydropower Project (80 MW)²⁶, which began dispatching operations in the end of September 2023, and Nyundo Hydropower Plant (4.5 MW) which is scheduled for commissioning in 2027/8.

Power Plant	Type	Installed Capacity (MW)	Effective Height (m)	Live Storage Capacity (MCM)	Design Flow (m3/s)	Status	Construction Year
Nyabarongo I	Impoundment	28	44.5	13.37	54	Operating	2014
Ntaruka	Impoundment	11.25	169	201	12	Operating	1957
Mukungwa I	Impoundment	12	65	89.6	14	Operating	1988
Rwaza	Run-of-river	2.6	-	-	12	Operating	2018
Mukungwa II	Run-of-river	3.6	6	0.9	13.6	Operating	2013
Nyundo	Run-of-river	4.5	-	-	13	Planned	2027/2028
Nyabarongo II	Impoundment	43.5	49	786.9	99.9	Planned	2027
Rusumo Regional HPP	Impoundment Run-of-river	80	15.3	184.5	116.9	Operating	2023

Figure 13 presents a map with the eight power plants and their corresponding subbasins which have been calculated using ArcGIS and its hydrology tools. Table 10: Power Plant Characteristics

²⁶ The total installed capacity here is reported for the regional HPP, to ensure accurate modelling for water availability and comparison of results with the existing Rusumo HPP feasibility study, which is publically available. However, Rwanda's share is 26.7 MW as reported in earlier chapters in this report.

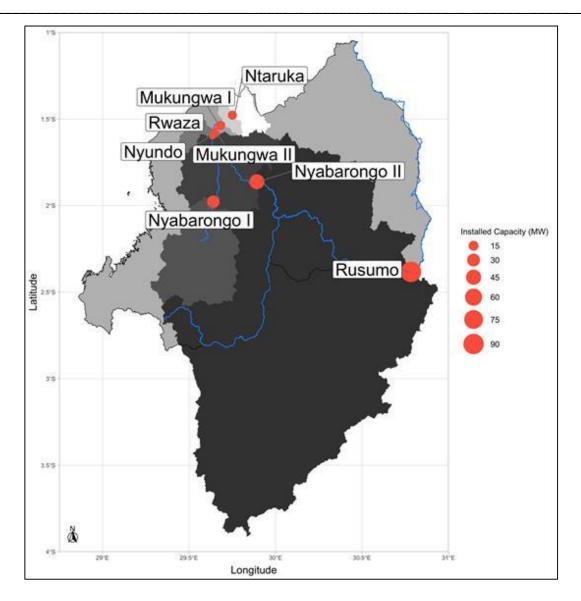


Figure 13: HPPs in Rwanda under analysis (different Climate Models and Climate Scenarios)

For all of these power plants climate projections and historical experiments have been obtained from the NASA's Earth Exchange Global Daily Downscaled Projections Dataset (NEX-GDDP). The initial analysis was performed using the inputs from 21 general circulation models (GCMs) under two different emission scenarios. *Table 9* presents the list with the names of the 21 GCMs used.

The emission scenarios analysed include representative concentration pathways (RCPs) 4.5 and 8.5. RCP 4.5 represents a mid-emissions scenario, in which greenhouse gas concentrations in the atmosphere peak around 2040 and decline after that. On the other hand, RCP 8.5 presents a business-as-usual scenario, in which greenhouse gas atmospheric concentrations continue to increase throughout the century. The calibration of the model was performed using the GRUN dataset, which provides a reconstruction of global runoff from 1902 to 2014.

Table 11: General Circulation Models (GCM) obtained from NASA's NEX-GDDP dataset and Used for Streamflow analysis

Global Climate Models
INCM4.0
BCC-CSM1-1
NorESM1-M
MRI-CGCM3
MPI-ESM-MR
MPI-ESM-LR
MIROC5
MIROC-ESM
MIROC-ESM-CHEM
IPSL-CM5A-MR
IPSL-CM5A-LR
GFDL-ESM2M
GFDL-ESM2G
GFDL-CM3
CanESM2
CSIRO-Mk3-6-0
CNRM-CM5
CESM1-BGC
CCSM4
BNU-ESM
ACCESS1-0

To generate projections of future streamflow and hydropower available capacity under different climate models and climate scenarios, a water balance model was used²⁷. The model consists of a water balance hydrological model paired with a hydropower operations model. The water balance equation in the model is based on the following:

$$Qt = St - 1 + Pt - AETt - St$$

Equation 5: Water-Balance Equation

Where: Q_t is the runoff generated at month t.

St-1 is the previous month's soil moisture storage component.

 P_t is the precipitation at month t.

 AET_t is the actual evapotranspiration at month *t*.

 S_t is that month's soil moisture storage component.

²⁷ The main appeal of the model is that it does not require using computationally intensive hydrological models with high data requirements and could therefore be applied to regions of the world with limited data, like Rwanda

The water balance model is calibrated using the shuffled complex evolution (SCE) algorithm, which is widely used in hydrological applications.

Additionally, the model has been coupled with a reservoir operations model for hydropower plants with large storage capabilities. In the case of Rwanda, the three power plants²⁸ with storage capabilities larger than one-month worth of supply were analyzed as reservoir power plants. These power plants were Mukungwa I, Ntaruka, and Nyabarongo II.

9.2. Rwanda's Climate & Forecast

Using the climate variables obtained from the NEX-GDDP dataset we were able to characterize future climate for the six sub-basins corresponding to the eight hydropower plants in the analysis (precipitation, maximum temperature, minimum temperature and potential evapotranspiration).

Figures 12-18 show the average monthly precipitation for each of the sub-basins. Rwaza-Muko and Mukungwa II power plants are close to each other so for the analysis they are considered as one sub-basin.

The average monthly precipitation for the historical period ranges from 1130 mm in the Rusumo basin to 1290 mm for Nyundo and the Rwaza-Muko/Mukungwa II basins.

Throughout the century, the multi-model mean of precipitation increases for all basins. By the end of the century precipitation increases on average between 7.8%-8.9% for RCP 4.5, and 17.8%-22.2% for RCP 8.5.

²⁸ The reservoir adjacent to the Mukungwa I power plant (Lake Ruhondo) would be able to supply 2.5 times the monthly design flow of the power plant if no inflows were reported. Likewise, the adjacent reservoir to the Ntaruka power plant (Lake Ruhondo & Lake Burera) could supply 6.5 times the monthly design flow with no inflows. Finally, the reservoir adjacent to Nyabarongo II would be able to supply 3 times the monthly streamflow for the power plant when full.

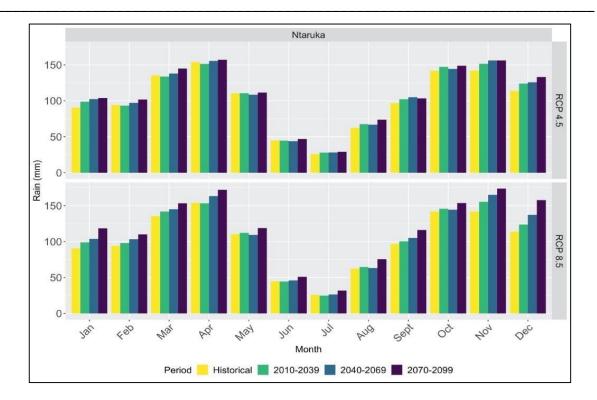


Figure 14: Average Multi-Model Precipitation (mm) for the Ntaruka Sub-basin.

The historical annual precipitation for the basin was 1210 mm. By the end of the century precipitation increases to 1310 mm for RCP 4.5 and 1430 mm for RCP 8.5.

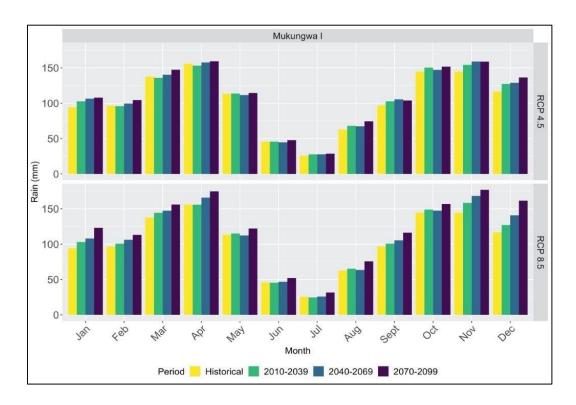


Figure 15: Average Multi-Model Precipitation (mm) for the Mukungwa I Sub-basin.

The historical annual precipitation for the basin was 1230 mm. By the end of the century precipitation increases to 1340 mm for RCP 4.5 and 1460 mm for RCP 8.5.

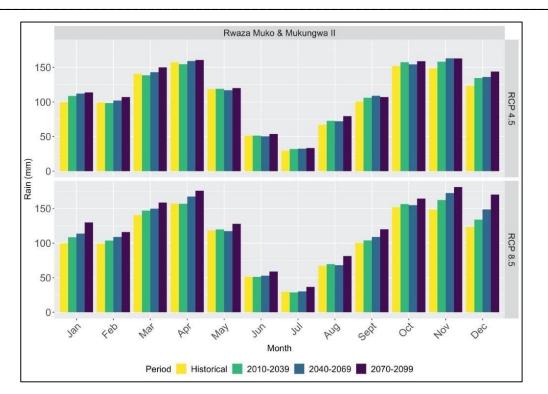


Figure 16: Average Multi-Model Precipitation (mm) for the Rwaza-Muko/Mukungwa II Sub-basin.

The historical annual precipitation for the basin was 1290 mm. By the end of the century precipitation increases to 1390 mm for RCP 4.5 and 1520 mm for RCP 8.5.

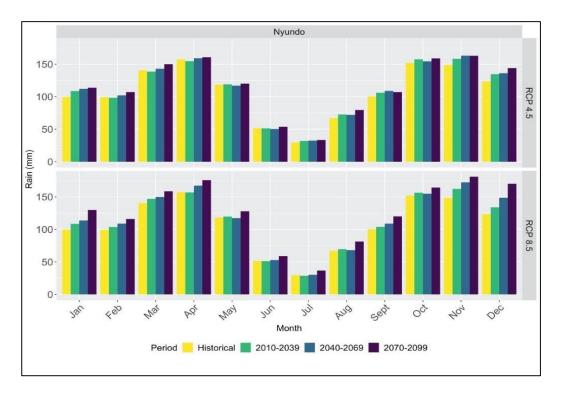


Figure 17: Average Multi-Model Precipitation (mm) for the Nyundo Sub-basin.

The historical annual precipitation for the basin was 1290 mm. By the end of the century precipitation increases to 1390 mm for RCP 4.5 and 1520 mm for RCP 8.5.

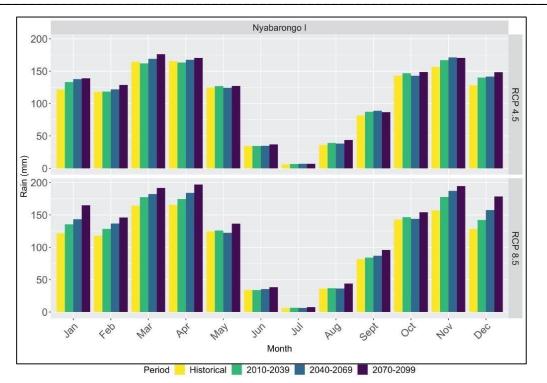


Figure 18: Average Multi-Model Precipitation (mm) for the Nyabarongo I Sub-basin.

The historical annual precipitation for the basin was 1280 mm. By the end of the century precipitation increases to 1380 mm for RCP 4.5 and 1550 mm for RCP 8.5.

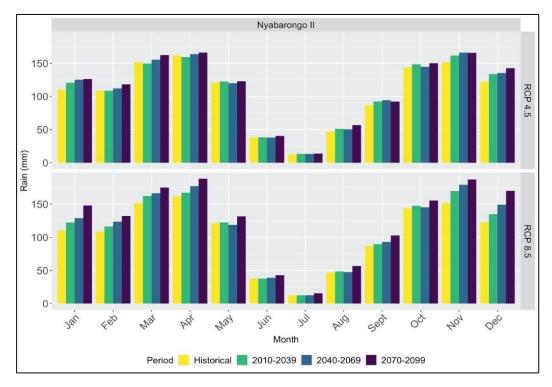


Figure 19: Average Multi-Model Precipitation (mm) for the Nyabarongo II Sub-basin.

The historical annual precipitation for the basin was 1260 mm. By the end of the century precipitation increases to 1360 mm for RCP 4.5 and 1510 mm for RCP 8.5.

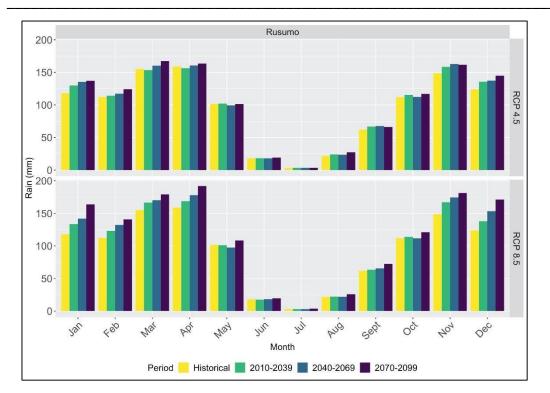


Figure 20: Average Multi-Model Precipitation (mm) for the Rusumo Sub-basin.

The historical annual precipitation for the basin was 1130 mm. By the end of the century precipitation increases to 1230 mm for RCP 4.5 and 1380 mm for RCP 8.5.

Figures 19 - 25 present the changes in minimum and maximum temperature for each sub-basin. Overall temperature increases are observed for all sub-basins, with more noticeable increases under RCP 8.5 than RCP 4.5. The average minimum annual temperature increase by the end of the century is 2.2 °C under RCP 4.5 and 4.2 °C under RCP 8.5. The average maximum annual temperature increase by the end of the century was 2°C under RCP 4.5 and 3.8°C under RCP 8.5.

The power plant in the hottest basin is the Rusumo power plant with an annual minimum historical temperature in the basin around 14.3° C, followed by the Nyabarongo I basin with an annual average minimum temperature historically of $12.5 \,^{\circ}$ C.

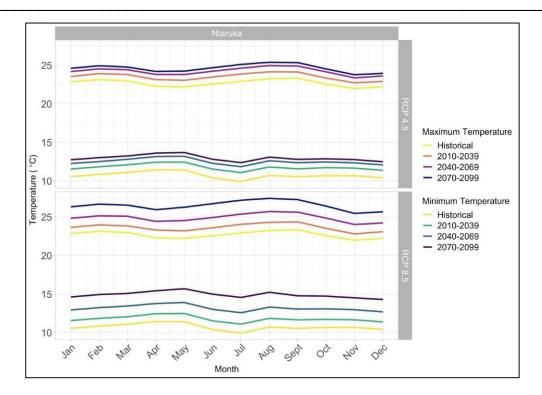


Figure 21: Changes in Minimum and Maximum Temperature (°C) for the Ntaruka Subbasin.

Average minimum temperature increases from 10.7 $^{\circ}$ C in the historical period to 13 $^{\circ}$ C under RCP 4.5 and 14.9 $^{\circ}$ C under RCP 8.5. Average maximum temperature increases from 22.7 $^{\circ}$ C

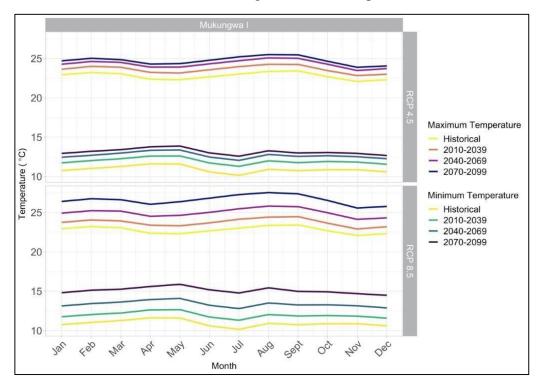


Figure 22: Changes in Minimum and Maximum Temperature (°C) for the Mukungwa I Sub-basin. Average minimum temperature increases from 10.9 °C in the historical period to 13.1 °C under RCP 4.5 and 15.1 °C under RCP 8.5. Average maximum temperature increases from 22.

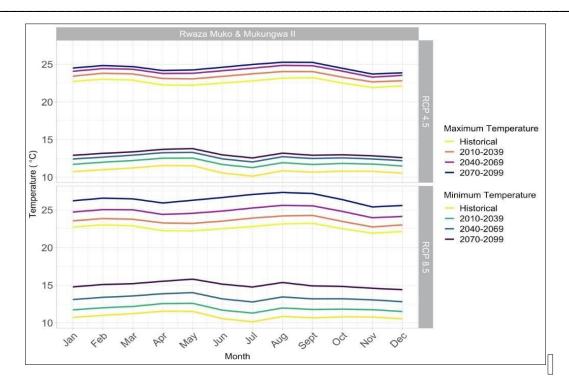


Figure 23: Changes in Minimum and Maximum Temperature (°C) for the Rwaza Muko/Mukungwa II Sub-basin.

Average minimum temperature increases from 10.9 °C in the historical period to 13.1 °C under RCP 4.5 and 15.0 °C under RCP 8.5.

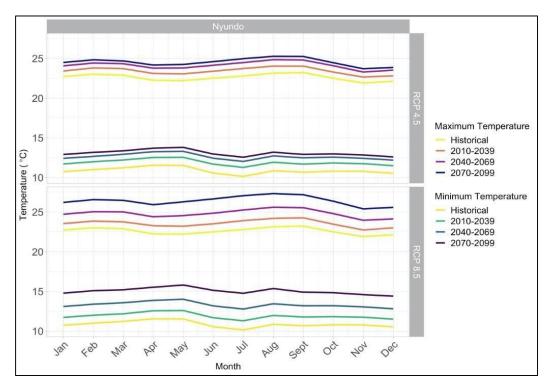


Figure 24: Changes in Minimum and Maximum Temperature (°C) for the Nyundo Subbasin.

Average minimum temperature increases from 10.9 °C in the historical period to 13.1 °C under RCP 4.5 and 15.0 °C under RCP 8.5. Average maximum temperature increases from 22.6 °C

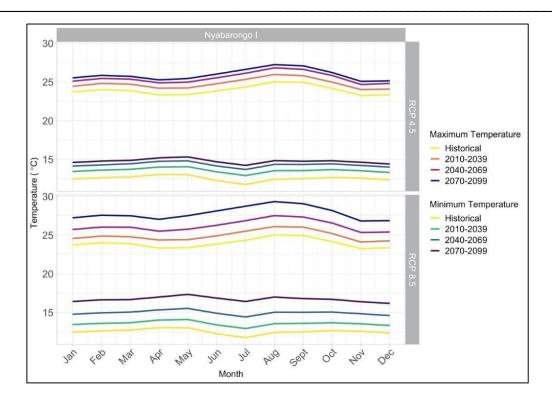


Figure 25: Changes in Minimum and Maximum Temperature (°C) for the Nyabarongo I Sub-basin.

Average minimum temperature increases from 12.5 °C in the historical period to 14.8 °C under RCP 4.5 and 16.7 °C under RCP 8.5.

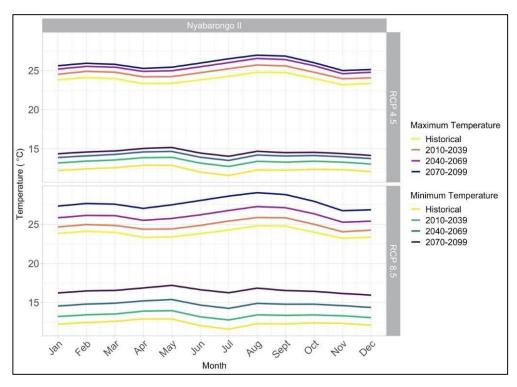


Figure 26: Changes in Minimum and Maximum Temperature (°C) for the Nyabarongo II Sub-basin. Average minimum temperature increases from 12.3 °C in the historical period to 14.5 °C under RCP 4.5 and 16.5 °C under RCP 8.5.

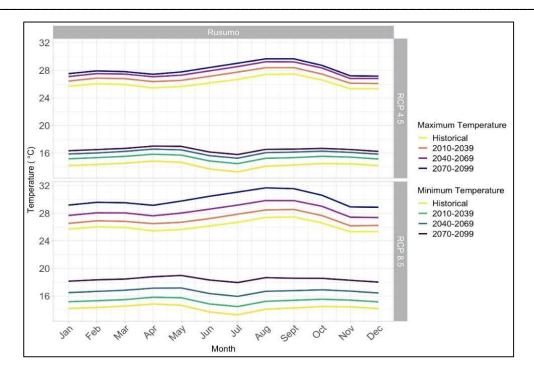


Figure 27: Changes in Minimum and Maximum Temperature (°C) for the Rusumo Subbasin.

Average minimum temperature increases from 14.3 °C in the historical period to 16.5 °C under RCP 4.5 and 18.4 °C under RCP 8.5. Average maximum temperature increases from 26.1 °C

Finally, *Figure 26* presents the changes in Potential Evapotranspiration (PET) for all basins. The values - calculated with the Hargreaves method - increases from 1470 mm annually to 1540 mm by the end of the century under RCP 4.5 and 1620 mm under RCP 8.5.

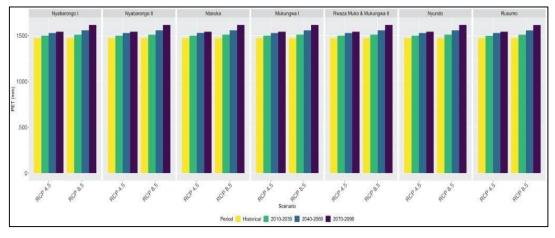


Figure 28: Changes in Potential Evapotranspiration (Hargreaves Method).

Historical PET was on average 1470 mm for all sub-basins and it increases by the end of the century to 1540 mm under RCP 4.5 and 1620 under RCP 8.5.

Overall, all basins are becoming hotter and wetter as the century progresses under both climate scenarios and the multi-model ensemble.

9.3. Streamflow & Available Capacity²⁹

Projections for future power plant available capacity (available MW of hydropower considering electricity maximization) were run under the two emission scenarios and the 21 GCMs.

Each future run was divided into 3 time frames for the purpose of the analysis; the near future (2010-2039), the mid-century (2040-2069), and the end of the century (2070-2099).

Even though the end of the century projections might not be as relevant for presentday planning decisions, it is important to include them and to understand the potential shifts in trends. Additionally, infrastructure typically outlasts its planned life and therefore power plants and reservoirs built nowadays might still be operating by the end of the century with the proper retrofits.

To be able to understand the trends under the two different scenarios of climate change, projections are compared to a historical experiment run. The historical experiment (1970-2005) is conducted using the outputs for the retrospective run of the GCMs. This comparison is performed using this historical experiment to keep the biases of the GCMs constant and to be able to understand the trends of climate change into the century.

All sub-basins are compared, even if the power plants have not been constructed yet. The ability to compare changes between what could have been generated in the past and the future allows us to understand the impact of climate change on hydropower in Rwanda.

The results section is divided into **two** parts:

- I. A streamflow analysis which includes monthly average naturalized streamflow and an analysis of the 10th percentile (*low flow*), the 50th percentile (*median flow*), and the 90th percentile (*high flow*) streamflow.
- II. A second analysis of simulated normalized available capacity considering power plants operate with all available streamflow as run-ofriver or reservoir every month of the analysis period. Three seasons were analysed: *Rainy Season 1 (January - May)*, *Dry Season (June -September)*, and *Rainy Season 2 (October - December)*.

9.3.1. Streamflow Analysis

The following section presents the results obtained for streamflow under the two scenarios, and three different time frames: near future (2010-2039), mid-future (2040-2069) and end-of-century (2070-2099). *Figures* 27 - 33 present the average monthly results from the multi-model ensemble.

²⁹ Available capacity is defined as the maximum monthly capacity in MW, constrained by the power plant's installed capacity, the simulated streamflow can maintain for a specific time frame

Overall, there are increases in streamflow for all sub-basins which can be seen in greater detail in *Tables 10, 11*, and *12*. These tables presents results for the low streamflow (10th percentile), median streamflow (50th percentile), and high streamflow (90th percentile). The changes in projected flow encompass all the results from the 21 GCMs.

Tables 10, 11, and 12^{30} present the results for the three cases respectively: <u>low flow</u>, <u>median flow</u> and <u>high flow</u>.

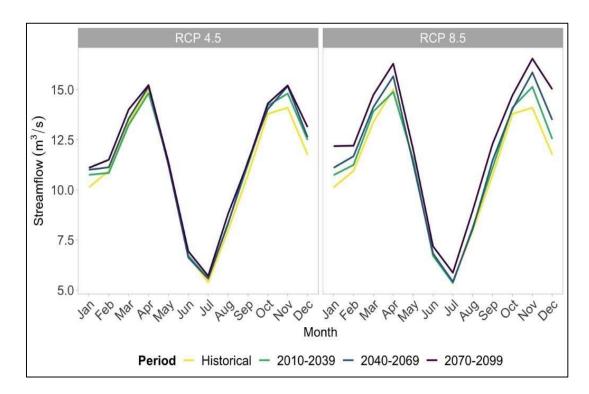


Figure 29: Average monthly streamflow from the multi-model ensemble for the Ntaruka subbasin

³⁰ These results present naturalized streamflow without considering water demand within the basin.

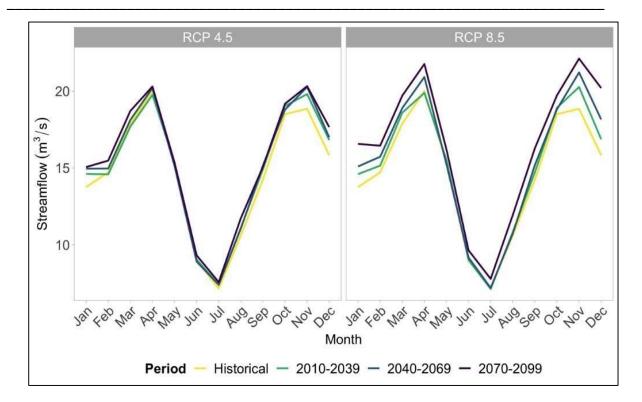


Figure 30: Average monthly streamflow from the multi-model ensemble for the Mukungwa I sub-basin

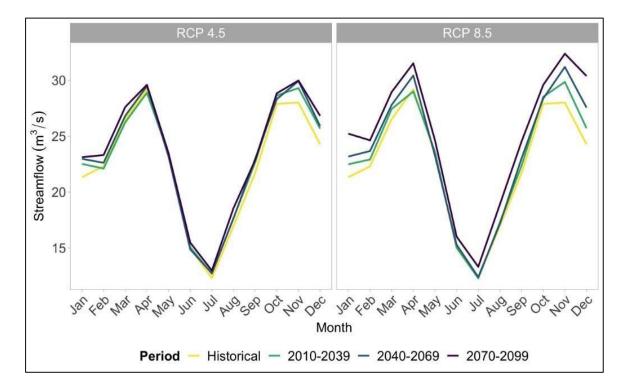


Figure 31: Average monthly streamflow from the multi-model ensemble for the Rwaza-Muko/Mukungwa II sub-basin

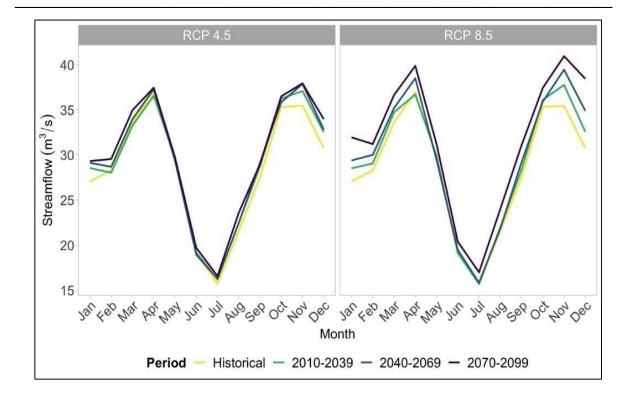


Figure 32: Average monthly streamflow from the multi-model ensemble for the Nyundo sub-basin.

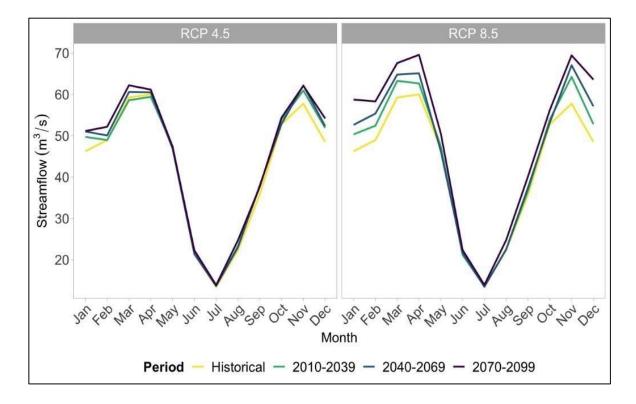


Figure 33: Average monthly streamflow from the multi-model ensemble for the Nyabarongo I subbasin.

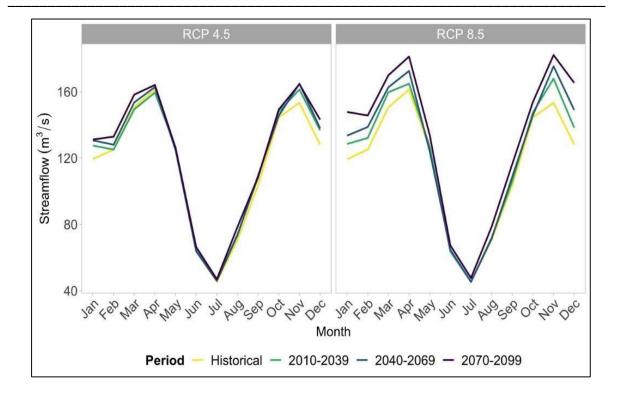


Figure 34: Average monthly streamflow from the multi-model ensemble for the Nyabarongo II sub-basin.

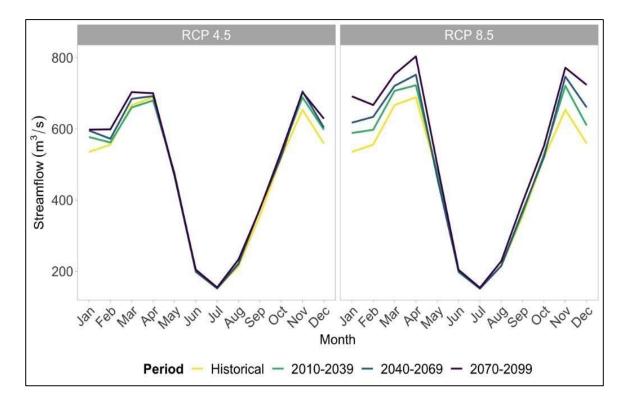


Figure 35: Average monthly streamflow from the multi-model ensemble for the Rusumo sub-basin

	Change in Projected 10th Percentile Flows						
Sub-basin	RCP 4.5			RCP 8.5			
	2010-2039	2040-2069	2070-2099	2010-2039	2040-2069	2070-2099	
Nyabarongo I	1.5%	-7.1%	-1.4%	-4.3%	-8.1%	1.9%	
Ntaruka	0.3%	-4.0%	-0.8%	-7.4%	-7.5%	7.4%	
Mukungwa I	-1.2%	-5.0%	-1.5%	-8.8%	-8.6%	7.0%	
Rwaza & Mukungwa II	-0.8%	-5.5%	-1.3%	-8.9%	-8.9%	5.3%	
Nyundo	-0.7%	-5.3%	-1.2%	-8.8%	-8.8%	5.4%	
Nyabarongo II	2.7%	-3.1%	1.6%	-4.2%	-6.5%	8.2%	
Rusumo Regional HPP	2.4%	-4.2%	-0.4%	-2.6%	-7.0%	2.7%	

Table 12: Projected Changes in 10th Percentile Naturalized Streamflow

Table 13: Projected Changes in Median (50th Percentile) Naturalized Streamflow

	Change in Projected 50th Percentile Flows						
Sub-basin	RCP 4.5			RCP 8.5			
	2010-2039	2040-2069	2070-2099	2010-2039	2040-2069	2070-2099	
Nyabarongo I	3.8%	3.9%	6.2%	4.4%	6.7%	14.8%	
Ntaruka	3.1%	5.1%	7.1%	3.4%	7.1%	15.7%	
Mukungwa I	3.1%	5.1%	7.0%	3.9%	6.9%	14.9%	
Rwaza & Mukungwa II	3.3%	4.9%	7.0%	3.8%	7.1%	15.6%	
Nyundo	3.3%	4.8%	7.1%	3.8%	7.1%	15.5%	
Nyabarongo II	4.3%	5.2%	6.8%	4.3%	8.1%	15.2%	
Rusumo Regional HPP	3.5%	4.6%	6.3%	4.5%	6.5%	14.5%	

Table 14: Projected Changes in 90th Percentile t Streamflow

	Change in Projected 90th Percentile Flows							
Sub-basin	RCP 4.5			RCP 8.5				
	2010-2039	2040-2069	2070-2099	2010-2039	2040-2069	2070-2099		
Nyabarongo I	4.7%	8.6%	12.0%	12.3%	20.9%	31.0%		
Ntaruka	5.2%	8.3%	10.8%	7.4%	13.9%	24.8%		
Mukungwa I	5.1%	8.5%	11.1%	7.5%	14.6%	24.8%		

	Change in Projected 90th Percentile Flows							
Sub-basin	RCP 4.5			RCP 8.5				
	2010-2039	2040-2069	2070-2099	2010-2039	2040-2069	2070-2099		
Rwaza & Mukungwa II	5.1%	8.5%	11.5%	7.2%	13.6%	24.2%		
Nyundo	5.1%	8.5%	11.5%	7.2%	13.6%	24.2%		
Nyabarongo II	4.5%	7.4%	10.7%	7.0%	13.6%	24.9%		
Rusumo Regional HPP	4.6%	7.5%	11.5%	9.1%	15.7%	27.4%		

The results show a trend of increasing streamflow for the median and the high flow. The increases vary depending on the period analysed but consistently progressing as we go further into the century.

The highest increases are projected for the high flows under RCP 8.5 (24.2%-31.0%). These increases will potentially translate to increased generation, only constrained by the power plant design characteristics.

On the other hand, the 10th percentile flows show a mix of both decreases and increases. Decreases are mostly projected for the near-future and the mid-century. These decreases are larger under RCP 8.5.

The effect of these decreases in available capacity will be discussed in the following sections. It might not necessarily affect generation overall. Additionally, adjacent reservoirs might help buffer some of the effects of decreased streamflow.

9.3.2. Normalized Available Capacity

Figures 34 and 35 show the projected changes in normalized available capacity. Additionally, <u>changes in available capacity (MW) are analysed for each month of the system</u> <u>considered between the projection runs and the control run</u>.

Three different seasons are portrayed: <u>rainy season 1</u>, <u>dry season</u>, and <u>rainy season</u> <u>2</u>.

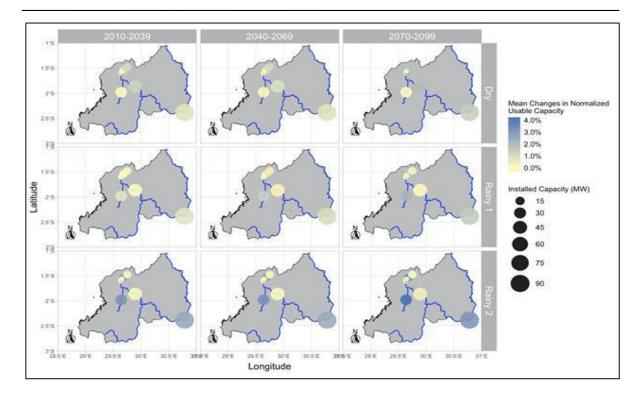
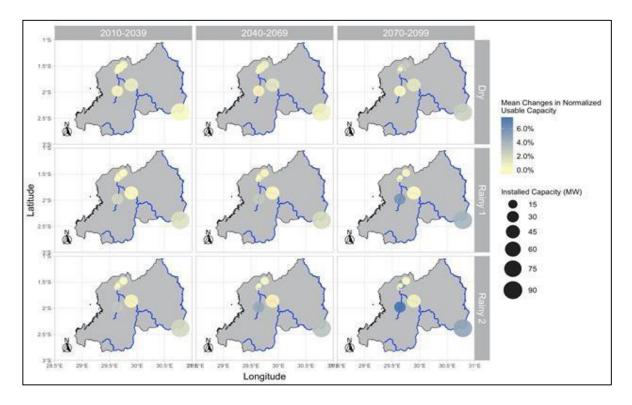
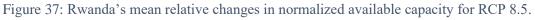




Figure 36: Rwanda's mean relative changes in normalized available capacity for RCP 4.5.

The analysis spans between the historical reference (1970-2005), the near future (2010-2039), the mid-century (2040-2069), and the end-of-the-century (2070-2099).

The analysis spans between the historical reference (1970-2005), the near future (2010-2039), the mid-century (2040-2069), and the end-of-the-century (2070-2099).

Rusumo Hydropower Project, which is currently under construction, would seem to experience increases in capacity factor throughout the century under all scenarios, especially during the rainy seasons (both) and the end of the century.

Smaller power plants like the Nyundo (4.5 MW) and Rwaza (2.6 MW) have less variability during the year of available capacity. These power plants should be able to operate at full capacity during the rainy seasons, given their lower design flow. During the drier months both power plants experience increased variability. Given the size of the power plants however, this should not be problematic for the operations of the system.

Other power plants exhibit increased monthly available capacities. This would be beneficial, given that all increases in streamflow can be utilized for power output and do not seem to pose any danger to their structures.

An increase in streamflow, and consequently available capacity is projected for the seven Rwandan hydropower plants analysed through the 21st century. These changes vary in magnitude depending on the power plant.

10. Conclusion & Proposed actions

10.1. Conclusions

- i. Generation resources continue to be dominated by Hydro power in the near term, with the penetration of methane, and peat. In the longer planning horizon, the emergence of new technologies is found to be of value in most scenarios (natural gas, solar, hydro pumped storage, waste).
- The registered demand growth over the past 5 years fell short relative to the initial expansion scenarios, this is in part due to the Covid-19 effect that saw 2% growth in the year 2020, but prospects of recovery are already in sight with 12.5% growth realised and sustained since 2021, and a forecast growth of 12.4% in 2024³¹. Demand growth in the years ahead is also contingent to the timely materialization of key projects of Vision 2050 as captured in the demand forecasts.
- iii. The resource assessment analysis has improved the perspective on generation resources; this will continue to be included in subsequent LCPDP updates for broader expansion paths.
- iv. From the climate change impact study on hydropower availability, an increase in streamflow and consequently available capacity is projected for the seven Rwandan hydropower plants analysed through the 21st century. These changes vary in magnitude, depending on power plant design characteristics.

10.2. Proposed Actions

- i. Analysis of potential for power trade: imports and export contracts (2-10 *years or longer*) to neighbouring countries to leverage the potential in having completed interconnections and the countries location and membership to both the CAPP & EAPP.
- Due to their technical operational considerations and high-level development aspirations, the expansion of VRE should ensure that all Solar technologies in the future should not be signed PPAs unless they embed storage. It is recommended to consider energy storage systems (reservoirs, pumped storage, batteries and others) as strategic resources as part of adaptation measures for grid stability and for climate change.
- As the grid expands, the Government of Rwanda should consider investments in generation expansion, especially for non-market services such as: frequency and voltage control; black start; grid congestion relief; transmission & distribution deferral; transmission forecasting error

³¹ The optimism of demand growth is raised in December 2023 update.

correction. These services would require be highly priced if outsourced from private developers.

- iv. There is also an emergent need to upgrade the grid code to align with necessary ancillary services required to continuously provide reliable electricity.
- v. To consolidate efforts towards realization of green electricity generation and building on the foundation laid down from the Rwanda Electricity Generation Resource Assessment Study, feasibility studies are proposed to be undertaken for generic projects that can serve as peaking power plants and help in functions/ancillary services. These include, in order of priority feasibility studies for: Utility Scale Solar PV embedded with storage (30-50 MW); Utility-scale Battery Energy Storage Systems (30 MW); Feasibility of conversion of thermal PPs to gas-fired plant (natural gas pipeline); Baseline study for Green Hydrogen as presented in table 8. This would enable to increase the share of Government-owned PPs, not to mention proposed action (iii) above.
- vi. In addition, to further diversify power generation sources towards renewable energy, there is a need to revive strategy for geothermal generation by reviving explorations in Geothermal resource potential.
- vii. Furthermore, to meet energy requirements to meet national development aspirations of the Rwanda Vision 2050 (mid-term 2035-target-objectives), it is imperative to fast-track studies and preliminaries for nuclear power generation & the corresponding enabling power trade.
- viii. Accelerate further demand growth inducing policies need to be improved to stimulate electricity demand in line with development aspirations as set forth in NST1 & NST2, and Rwanda Vision 2050.
- ix. In line with upcoming generation, emerging trends in energy intensities such as in electric mobility, the potential embedded generation, and as part of the loss reduction efforts, it is important to plan different tariff regimes that are business boosting, while optimizing system peak and off-peak demand.
- x. To renegotiate PPAs of projects not yet started for an optimal integration schedule depending on demand evolution.

10.3. Way forward

NO	CHALLENGE	RECOMMENDATION(S)
1.	Generation	• Proposed generation road map and updated
	expansion to be	LCPDP to be approved by the GoR (MININFRA)

NO	CHALLENGE	RECOMMENDATION(S)
	delivered in line with demand growth	• Demand forecasting to be updated regularly based on more realistic plans and assumptions aligned to the future planning cycle.
2.	Ascertaining the exact amount of lake methane that can be exploited for electricity production in an economical and sustainable way.	• An updated and comprehensive resource study has been conducted to ascertain the existing resources in Rwanda. These resources include solar, hydro (including pumped storage), wind, geothermal, waste to power, peat and lake Kivu methane. There is need to conduct feasibility studies in identified resource locations to ascertain the exact amounts of reserves.
3.	Demand Growth Inducing policies to be expanded	 GOR policy decision to be taken to stimulate demand growth of over 10%. Especially to catch up form unrealized growth in the previous years Required infrastructure for industrial parks to be in place and the need to accelerate implementation of flagship Vision 2050 Introduce more commercial and industrial demand and provide incentives for consumption during system off-peak. (Introduction of reduced tariffs for consumers during off-peak periods to promote load shifting).
4.	System Stability	• Installed capacity of new power plants should not exceed a multiple of 10% of Rwanda grid capacity (peak demand) at the time of CoD. This is to avoid high spinning reserves, grid instability and resulting high costs involved in case of disturbances caused by the new plant.
5.	Grid modernization	 Need to direct more investments to non-market services (Voltage Control; Black Start; Grid Congestion Relief; T&D Deferral; etc) that are important to maintaining reliable electric system. There is also a need to develop peaking power plants and/or battery storage systems to absorb excess off-peak capacity and load shedding,
6.	Climate change	• Consider energy storage (reservoirs, pumped storage, batteries storage systems, electrolysers, and others) as peaking generation resources as part of adaptation measures to meet climate change goals (decarbonization).
7.	Emissions factors and compatibility with Rwanda's NDC	• More emission scenario analysis is planned to be included in future updates for mitigation and adaptation purposes, on the adverse impacts of climate change in the electricity sector

References

- 1. African Union Development Agency (AUDA-NEPAD), Modelling Continental Masterplan (2nd Phase): Integrated Continental Demand Forecasts-Scenario Analysis. June 2022.
- 2. African Union Development Agency (AUDA-NEPAD), Modelling Continental Masterplan (2nd Phase): Resource Assessment and Technoeconomic Data and Assumptions Report. June 2022.
- 3. East Africa Energy Program (EAEP), Rwanda Resource Study for Electricity Generation Sources. May 2022. Kigali, Rwanda.
- 4. East African Power Pool (EAPP), East African Power Pool Power Balance Statement 2021 Edition. March 2023. Addis Ababa, Ethiopia.
- 5. Ministry of Finance and Economic Planning (MINECOFIN), Economic Development and Poverty Reduction Strategy II 2013-2018. Republic of Rwanda, 2013. Kigali, Rwanda.
- Ministry of Finance and Economic Planning (MINECOFIN), National Strategy for Transformation (NST1) 2017–2024. Republic of Rwanda. 2018 Kigali, Rwanda.
- 7. Integrated Planning Review. Main Report.
- Energy Investment Forum, Methane, Peat and Waste-to-Power Projects in Rwanda: Opportunities for Investment in Rwanda. February 29, 2012. Kigali, Rwanda.
- 9. Ministry of Infrastructure (MININFRA), Rwanda Energy Policy. March 2015. Republic of Rwanda. Kigali, Rwanda.
- 10. Ministry of Infrastructure (MININFRA), Energy Sector Strategic Plan. 2013/14-2017/18. Republic of Rwanda. March 2015. Kigali, Rwanda.
- Ministry of Infrastructure (MININFRA), Energy Sector Forward Looking JSR for FY 2015/16 Report, Republic of Rwanda. June 2015. Kigali, Rwanda.
- 12. Ministry of Infrastructure (MININFRA), Energy Sector Performance Report/Backward Looking JSR for FY 2014/15, November 2015. Republic of Rwanda. Kigali, Rwanda.
- 13. Ministry of Infrastructure (MININFRA), Rural Electrification Strategy. Republic of Rwanda. June 2016. Kigali, Rwanda.
- 14. Ministry of Infrastructure (MININFRA), Energy Sector Strategic Plan, 2018/19 2023/24. Republic of Rwanda, September 2018. Kigali, Rwanda.
- 15. National Institute of Statistics of Rwanda (NISR), The Third Integrated Household Living Conditions Survey (EICV3). Main Indicators Report.

- 16. National Institute of Statistics of Rwanda (NISR), Ministry of Finance and Economic Planning (MINECOFIN) [Rwanda], 2012. Fourth Rwanda Population and Housing Census. Thematic Report: Population Projections
- 17. National Institute of Statistics of Rwanda (NISR), Integrated Household Living Conditions Survey (EICV), Economic Activity Thematic Report. March 2016.
- 18. National Institute of Statistics of Rwanda (NISR), Fifth Rwanda Population and Housing Census. Thematic Report: Population Projections, July 2023.
- 19. National Institute of Statistics of Rwanda (NISR); Fifth Rwanda Population and Housing Census, Main Indicators Report, February 2023.
- 20. National Institute of Statistics of Rwanda (NISR), Fifth Rwanda Population and Housing Census, Thematic Report: Population size, structure, and spatial distribution, July 2023.
- 21. National Institute of Statistics of Rwanda (NISR), Fifth Rwanda Population and Housing Census, Thematic Report: Housing & Household Characteristics, July 2023.
- 22. National Institute of Statistics of Rwanda (NISR), Gross Domestic Product and its Structure 2023, March 2024.
- 23. NELSAP Consultancy Services for Power Network Analysis of the Interconnection of Electric Grids of NEL countries.
- 24. Rwanda Utility Regulatory Agency (RURA), Strategic Plan 2013-2018. June 2013. Kigali, Rwanda.
- 25. The project preparation of electricity development plan for sustainable geothermal energy development in Rwanda. (Book 1 of 4). Summary & Introduction. Final report. March 2015. Republic of Rwanda. Ministry of Infrastructure. Rwanda Energy Group. Japan International Cooperation Agency (JICA)
- 26. The International Renewable Energy Agency (IRENA) and Lawrence Berkeley National Laboratory, Renewable Energy Zones for the Africa Clean Energy Corridor: Multi-criteria Analysis for Planning Renewable Energy. October 2015.
- 27. Climate Change & Hydropower Generation in Rwanda: Assessment of Current & Future Power Plants (Ph.D. Candidate, Department of Engineering and Public Policy Department of Civil and Environmental Engineering, Carnegie Mellon University).